Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Diabetic foot ulcers (DFUs) are a frequent and severe complication of diabetes, leading to chronic wounds, infections, and even amputations. The treatment of DFUs poses a significant challenge to healthcare professionals, and therefore new therapeutic approaches are necessary. In the current research, nicaraven was loaded into gelatin nanofibers using the electrospinning method. Then, these fibers were crushed and dispersed in the matrix of a collagen hydrogel to prepare a nanocomposite sponge for diabetic wound healing applications. The produced scaffolds protected skin cells against oxidative stress and increased their migration activity. An in vivo study was performed in a rat model of diabetic wound. The study revealed that the sponges loaded with nicaraven accelerated the diabetic wound closure and improved tissue epithelialization and collagen deposition. The enzyme-linked immunosorbent assay showed that the tissue concentration levels of interleukin-6 and tumor necrosis factor alpha cytokines were significantly reduced in diabetic wounds treated with the nicaraven-loaded nanocomposite sponge.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
40--51
Opis fizyczny
Bibliogr. 36 poz., rys.
Twórcy
autor
- Medical College, Xuchang University Xuchang, China
autor
- Nursing Department, Xuchang Central Hospital Xuchang, China
Bibliografia
- [1] Burgess, J.L., Wyant, W.A., Abdo Abujamra, B., Kirsner, R.S., Jozic, I., Diabetic wound-healing science, Medicina, 2021, 57(10): 1072
- [2] Chen, J., He, J., Yang, Y., Qiao, L., Hu, J., Zhang, J., et al., Antibacterial adhesive self-healing hydrogels to promote diabetic wound healing, Acta Biomater., 2022, 146: 119–130
- [3] Liang, Y., Liang, Y., Zhang, H., Guo, B., Antibacterial biomaterials for skin wound dressing, Asian J. Pharm. Sci., 2022, 17(3): 353–384
- [4] Xue, J., Wang, X., Wang, E., Li, T., Chang, J., Wu, C., Bioinspired multifunctional biomaterials with hierarchical microstructure for wound dressing, Acta Biomater., 2019, 100: 270–279
- [5] Peng, W., Li, D., Dai, K., Wang, Y., Song, P., Li, H., et al., Recent progress of collagen, chitosan, alginate and other hydrogels in skin repair and wound dressing applications, Int. J. Biol. Macromol., 2022, 208: 400–408
- [6] Brett, D., A review of collagen and collagen-based wound dressings, Wounds, 2008, 20(12): 347–356
- [7] Wang, W., Lin, S., Xiao, Y., Huang, Y., Tan, Y., Cai, L., et al., Acceleration of diabetic wound healing with chitosan-crosslinked collagen sponge containing recombinant human acidic fibroblast growth factor in healing-impaired STZ diabetic rats, Life Sci., 2008, 82(3–4): 190–204
- [8] Wu, L., Zhang, Q., Li, Y., Song, W., Chen, A., Liu, J., et al., Collagen sponge prolongs taurine release for improved wound healing through inflammation inhibition and proliferation stimulation, Ann. Transl. Med., 2021, 9(12):36–59
- [9] Huang, Z.M., Zhang, Y.Z., Ramakrishna, S., Lim, C.T., Electrospinning and mechanical characterization of gelatin nanofibers, Polymer, 2004, 45(15): 5361–5368
- [10] Borges-Vilches, J., Unalan, I., Fernández, K., Boccaccini, A.R., Fabrication of biocompatible electrospun poly (ε-caprolactone)/gelatin nanofibers loaded with Pinus radiata bark extracts for wound healing applications, Polymers, 2022, 14(12): 2331
- [11] Yokota, R., Fukai, M., Shimamura, T., Suzuki, T., Watanabe, Y., Nagashima, K., et al., A novel hydroxyl radical scavenger, nicaraven, protects the liver from warm ischemia and reperfusion injury, Surgery, 2000, 127(6): 661–669
- [12] Suliman Maashi, M., Felemban, S.G., Almasmoum, H.A., Jarahian, M., Nicaraven-loaded electrospun wound dressings promote diabetic wound healing via proangiogenic and immunomodulatory functions: a preclinical investigation, Drug. Deliv. Transl. Res., 2023, 13(1): 222–236
- [13] Chattopadhyay, S., Raines, R.T., Collagen‐based biomaterials for wound healing, Biopolymers, 2014, 101(8): 821–833
- [14] Tavakoli, S., Klar, A.S., Advanced hydrogels as wound dressings, Biomolecules, 2020, 10(8): 1169
- [15] Jodati, H., Yılmaz, B., Evis, Z., A review of bioceramic porous scaffolds for hard tissue applications: Effects of structural features, Ceram. Int., 2020, 46(10): 15725–15739
- [16] Abbasi, N., Hamlet, S., Love, R.M., Nguyen, N.T., Porous scaffolds for bone regeneration, J. Sci.: Adv. Mater. Devices, 2020, 5(1): 1–9
- [17] Rahmati, M., Mills, D.K., Urbanska, A.M., Saeb, M.R., Venugopal, J.R., Ramakrishna, S., et al., Electrospinning for tissue engineering applications, Prog. Mater. Sci., 2021, 117: 100721
- [18] Sill, T.J., Von Recum, H.A., Electrospinning: applications in drug delivery and tissue engineering, Biomaterials, 2008, 29(13): 1989–2006
- [19] Amini Moghaddam, M., Di Martino, A., Šopík, T., Fei, H., Císař, J., Pummerová, M., et al., Polylactide/polyvinylalcohol-based porous bioscaffold loaded with gentamicin for wound dressing applications, Polymers, 2021, 13(6): 921
- [20] Ying, G., Manríquez, J., Wu, D., Zhang, J., Jiang, N., Maharjan, S., et al., An open-source handheld extruder loaded with pore-forming bioink for in situ wound dressing, Mater. Today Bio, 2020, 8: 100074
- [21] Jain, K.K., Nicaraven for the treatment of cerebral vasospasm in subarachnoid haemorrhage, Expert. Opin. Invest. Drugs, 2000, 9(4): 859–870
- [22] Xu, Z., Han, S., Gu, Z., Wu, J., Advances and impact of antioxidant hydrogel in chronic wound healing, Adv. Healthc. Mater., 2020, 9(5): 1901502
- [23] Comino-Sanz, I.M., López-Franco, M.D., Castro, B., Pancorbo-Hidalgo, P.L., The role of antioxidants on wound healing: A review of the current evidence, J. Clin. Med., 2021, 10(16): 3558
- [24] Xu, Y., Zhai, D., Goto, S., Zhang, X., Jingu, K., Li, T.S., Nicaraven mitigates radiation-induced lung injury by downregulating the NF-κB and TGF-β/Smad pathways to suppress the inflammatory response, J. Radiat. Res., 2022, 63(2): 158–165
- [25] Zha, D., Yang, Y., Huang, X., Wang, Z., Lin, H., Yang, L., et al., Nicaraven protects against endotoxemia-induced inflammation and organ injury through modulation of AMPK/Sirt1 signaling in macrophages, Eur. J. Pharmacol., 2023, 946: 175666
- [26] Abdelghany, L., Zhang, X., Kawabata, T., Goto, S., El-Mahdy, N., Jingu, K., et al., Nicaraven prevents the fast growth of inflamed tumors by an anti-inflammatory mechanism, Med. Oncol., 2022, 39: 1–10
- [27] Kawakatsu, M., Urata, Y., Imai, R., Goto, S., Ono, Y., Nishida, N., et al., Nicaraven attenuates radiation-induced injury in hematopoietic stem/progenitor cells in mice, PLoS One, 2013, 8(3): e60023
- [28] Dong, R., Guo, B., Smart wound dressings for wound healing, Nano Today, 2021, 41: 101290
- [29] Graça, M.F., Miguel, S.P., Cabral, C.S., Correia, I.J., Hyaluronic acid – Based wound dressings: A review, Carbohydr. Polym., 2020, 241: 116364
- [30] Moura, L.I., Dias, A.M., Carvalho, E., de Sousa, H.C., Recent advances on the development of wound dressings for diabetic foot ulcer treatment – A review, Acta Biomater., 2013, 9(7): 7093–7114
- [31] Sood, A., Granick, M.S., Tomaselli, N.L., Wound dressings and comparative effectiveness data, Adv. Wound Care, 2014, 3(8): 511–529
- [32] Abdelrahman, T., Newton, H., Wound dressings: principles and practice, Surgery (Oxford), 2011, 29(10): 491–495
- [33] Vowden, K., Vowden, P., Wound dressings: principles and practice, Surgery (Oxford), 2017, 35(9): 489–494
- [34] Lin, H., Wu, X., Yang, Y., Wang, Z., Huang, W., Wang, L.F., et al., Nicaraven inhibits TNFα-induced endothelial activation and inflammation through suppression of NF-κB signaling pathway, Can. J. Physiol. Pharmacol., 2021, 99(8): 803–811
- [35] Zhang, X., Moriwaki, T., Kawabata, T., Goto, S., Liu, K.X., Guo, C.Y., et al., Nicaraven attenuates postoperative systemic inflammatory responses-induced tumor metastasis, Ann. Surg. Oncol., 2020, 27: 1068–1074
- [36] Ali, H., Galal, O., Urata, Y., Goto, S., Guo, C.Y., Luo, L., et al., The potential benefits of nicaraven to protect against radiation-induced injury in hematopoietic stem/progenitor cells with relative low dose exposures, Biochem. Biophys. Res. Commun., 2014, 452(3): 548–553
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-48412480-be8f-49d4-9d09-8346c7adfda4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.