Powiadomienia systemowe
- Sesja wygasła!
- Sesja wygasła!
Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The present work focuses on examining the batch removal of Fe (III) from water using powdered Peganum Harmala seeds, characterized as FT-IR. In this work, several parameters are measured, including contact time, pH, Fe (III) concentration, reaction temperature effect, and adsorbent dose effect. Fe (III) adsorption was assessed using a UV-vis spectrophotometer at a wavelength of 620 nm. The findings demonstrated a positive correlation between the dosage of adsorbent and Fe (III) ions removal, with an increase in the adsorbent dose corresponding to higher elimination of Fe (III) ions. Therefore, the Langmuir isotherm model yielded more accurate equilibrium data compared to the Frendulich model. The kinetic data were mostly analyzed using a pseudo-second-order model rather than a pseudo-first-order model. Thermodynamic parameters, including enthalpy (ΔH◦), entropy (ΔS◦), and free energy (ΔG◦), were calculated. The adsorption process was found to be exothermic. Overall, Peganum Harmala was a favorable adsorbent for removing Fe (III) from aqueous solutions.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
3--12
Opis fizyczny
Bibliogr. 42 poz., tab., wykr.
Twórcy
autor
- Empty Quarter Research Unit, Department of Chemistry, College of Science and Art in Sharurah, Najran University, Saudi Arabia
autor
- Empty Quarter Research Unit, Department of Chemistry, College of Science and Art in Sharurah, Najran University, Saudi Arabia
autor
- Empty Quarter Research Unit, Department of Chemistry, College of Science and Art in Sharurah, Najran University, Saudi Arabia
autor
- Empty Quarter Research Unit, Department of Chemistry, College of Science and Art in Sharurah, Najran University, Saudi Arabia
- Veterinary Research Institute (VRI), P. O BOX 8067, AL Amarat, Khartoum, Sudan
autor
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
autor
- Empty Quarter Research Unit, Department of Chemistry, College of Science and Art in Sharurah, Najran University, Saudi Arabia
autor
- Empty Quarter Research Unit, Department of Chemistry, College of Science and Art in Sharurah, Najran University, Saudi Arabia
autor
- Empty Quarter Research Unit, Department of Chemistry, College of Science and Art in Sharurah, Najran University, Saudi Arabia
- Chemistry Department, Faculty of Science, Suez Canal University, Ismailia, Egypt
Bibliografia
- [1] Abdel-Ghani, N. T., Hefny, M. & El-Chaghaby, G. A. F. (2007). Removal of Lead from Aqueous Solution Using Low Cost Abundantly Available Adsorbents. International Journal of Environmental Science & Technology 4(1), pp. 67–73. DOI:10.1007/BF03325963.
- [2] Aksu, Z. & Alper Işoǧlu, I. (2005). Removal of Copper(II) Ions from Aqueous Solution by Biosorption onto Agricultural Waste Sugar Beet Pulp. Process Biochemistry 40(9), pp. 3031–3044. DOI:10.1016/J.PROCBIO.2005.02.004.
- [3] Aksu, Z. & Tülin, K. (1991). A Bioseparation Process for Removing Lead(II) Ions from Waste Water by Using C. Vulgaris. Journal of Chemical Technology & Biotechnology 52(1), pp. 109–118. DOI:https://doi.org/10.1002/jctb.280520108.
- [4] Ang, X. W., Sethu, V. S. Andresen, J. M. & Sivakumar, M. (2013). Copper(II) Ion Removal from Aqueous Solutions Using Biosorption Technology: Thermodynamic and SEM–EDX Studies.” Clean Technologies and Environmental Policy 15(2), pp. 401–407. DOI:10.1007/s10098-012-0523-0.
- [5] Annadurai, G., R., Juang, S. and Lee, D. J. (2003). Adsorption of Heavy Metals from Water Using Banana and Orange Peels. Water Science and Technology, 47(1), pp. 185–190. DOI:10.2166/wst.2003.0049.
- [6] Aregawi, B.H. & Mengistie, A.A. (2013). Removal of Ni(II) from Aqueous Solution Using Leaf, Bark and Seed of Moringa Stenopetala Adsorbents. Bulletin of the Chemical Society of Ethiopia 27(1), pp. 35–47. DOI:10.4314/bcse.v27i1.4.
- [7] Ayaz, T., Khan,S., Khan, A.Z., Lei, M. & Mehboob, A. (2020). Remediation of Industrial Wastewater Using Four Hydrophyte Species: A Comparison of Individual (Pot Experiments) and Mix Plants (Constructed Wetland). Journal of Environmental Management 255:109833. DOI:https://doi.org/10.1016/j.jenvman.2019.109833.
- [8] Belay, K.T. & Hayelom, A. (2014). Removal of Methyl Orange from Aqueous Solutions Using Thermally Treated Egg Shell (Locally Available and Low Cost Biosorbent).” Chemistry and Materials Research 6, pp. 31–39.
- [9] Bhatti, I., Qureshi, K., Kazi, R, & Ansari, Q. (2008). Preparation and Characterization of Chemically Activated Almond Shells by Optimization of Adsorption Parameter for the Removal of Cr (VI) from Aqueous Solution. International Journal of Chemical and Biomolecular Engineering 1, pp. 50–55.
- [10] Bulut, Y. & Tez, Z. (2007). Adsorption Studies on Ground Shells of Hazelnut and Almond. Journal of Hazardous Materials, 149(1), pp. 35–41. DOI:10.1016/J.JHAZMAT.2007.03.044.
- [11] Chakravarty, P., Sen Sarma,N. & Sarma, H. P. (2010). Removal of Lead(II) from Aqueous Solution Using Heartwood of Areca Catechu Powder.” Desalination 256(1–3), pp. 16–21. DOI:10.1016/J.DESAL.2010.02.029.
- [12] El-Araby, H.A,, Abel M. Ibrahim, M. A., Mangood, A.H. & Abdel-Rahman, M. A. (2017). Sesame Husk as Adsorbent for Copper(II) Ions Removal from Aqueous Solution. Journal of Geoscience and Environment Protection 05(07), pp. 109–152. DOI:10.4236/gep.2017.57011.
- [13] El-Ashtoukhy, E. S. Z., Amin, N. K. & Abdelwahab, O. (2008). Removal of Lead (II) and Copper (II) from Aqueous Solution Using Pomegranate Peel as a New Adsorbent. Desalination 223(1–3), pp. 162–173. DOI:10.1016/J.DESAL.2007.01.206.
- [14] El-Geundi, M.S. (1991). Homogeneous Surface Diffusion Model for the Adsorption of Basic Dyestuffs onto Natural Clay in Batch Adsorbers. Adsorption Science & Technology 8(4), pp. 217–225. DOI:10.1177/026361749100800404.
- [15] Freundlich, H. M. F. (1906). Over the Adsorption in Solution. J. Phys. Chem 57, pp. 385–471.
- [16] Gładysz-Płaska, A., Majdan, M., Pikus, SD. & Sternik, D. (2012). Simultaneous Adsorption of Chromium(VI) and Phenol on Natural Red Clay Modified by HDTMA. Chemical Engineering Journal 179, pp. 140–150. DOI:10.1016/J.CEJ.2011.10.071.
- [17] Hejna, M., Moscatelli, A., Stroppa, N., Onelli, E., Pilu, S., Baldi, A. & Rossi, L. (2020). Bioaccumulation of Heavy Metals from Wastewater through a Typha Latifolia and Thelypteris Palustris Phytoremediation System. Chemosphere 241, 125018. DOI:10.1016/J.CHEMOSPHERE.2019.125018.
- [18] Hema, M. A., & Arivoli, S. (2010). Adsorption Kinetics and Thermodynamics of Malachite Green Dye unto Acid Activated Low Cost Carbon. Journal of Applied Sciences and Environmental Management 12(1), pp. 43-51.
- [19] Ho, Y. S. &. McKay, G. (1998). Sorption of Dye from Aqueous Solution by Peat. Chemical Engineering Journal 70(2), pp. 115–24. DOI:10.1016/S0923-0467(98)00076-1.
- [20] Hossain, M. A., Ngo, H. H., Guo, W. S. & Setiadi, T. (2012). Adsorption and Desorption of Copper(II) Ions onto Garden Grass. Bioresource Technology 121, pp. 386–395. DOI:10.1016/J.BIORTECH.2012.06.119.
- [21] Imran, A. & Gupta, V. K. (2006). Adsorbents for Water Treatment: Development of Low-Cost Alternatives to Carbon. pp. 149–184 [in] Encyclopedia of Surface and Colloid Science, Taylor & Francis, New York,. Vol. 2nd Edition.
- [22] Kučić, D., Simonič, M. & Furač, L. (2017). Batch Adsorption of Cr (VI) Ions on Zeolite and Agroindustrial Waste. Chemical and Biochemical Engineering Quarterly 31(4), pp. 497–507.
- [23] Kumar, M.A., Chitra, R. & Mishra, G. K. (2010). REMOVAL OF HEAVY METAL IONS Removal of Heavy Metal Ions from Aqueous Solutions Using Chemically (Na 2 S) Treated Granular Activated Carbon as an Adsorbent. Vol. 69.
- [24] Laghrib, F., Sana S., Lahrich, S. & El Mhammedi, M.A. (2021). Best of Advanced Remediation Process: Treatment of Heavy Metals in Water Using Phosphate Materials. International Journal of Environmental Analytical Chemistry 101(9), pp. 1192–1208. DOI:10.1080/03067319.2019.1678603.
- [25] Langmuir, I. (1916). “THE CONSTITUTION AND FUNDAMENTAL PROPERTIES OF SOLIDS AND LIQUIDS. PART I. SOLIDS.” Journal of the American Chemical Society, 38(11), pp. 2221–2295. DOI:10.1021/ja02268a002.
- [26] Lesley, J., Jun, B.M., Flora, J.R.V., Park, C.M. & Yoon, Y. (2019). Removal of Heavy Metals from Water Sources in the Developing World Using Low-Cost Materials: A Review. Chemosphere 229, pp. 142–159. DOI:10.1016/J.CHEMOSPHERE.2019.04.198.
- [27] Mamba, B. B., Dlamini, N. P. & Mulaba-Bafubiandi. A. F. (2009). Biosorptive Removal of Copper and Cobalt from Aqueous Solutions: Shewanella Spp. Put to the Test. Physics and Chemistry of the Earth, Parts A/B/C 34(13–16), pp. 841–849. DOI:10.1016/J.PCE.2009.07.009.
- [28] Moussavi, G. & Khosravi, R. (2012). Preparation and Characterization of a Biochar from Pistachio Hull Biomass and Its Catalytic Potential for Ozonation of Water Recalcitrant Contaminants. Bioresource Technology 119, pp. 66–71. DOI:10.1016/J.BIORTECH.2012.05.101.
- [29] Oo, C.-W., Osman, H., Fatinathan, S. & Akmar, Md. Zin.M. (2013). The Uptake of Copper(II) Ions by Chelating Schiff Base Derived from 4-Aminoantipyrine and 2-Methoxybenzaldehyde. International Journal of Nonferrous Metallurgy 02(01), pp. 1–9. DOI:10.4236/ijnm.2013.21001.
- [30] Pandey, P., Sambi,S.S., Sharma, S. K. & Singh, S. (2009). Batch Adsorption Studies for the Removal of Cu (II) Ions by ZeoliteNaX from Aqueous Stream. edited by Proceedings of the World Congress on Engineering and Computer Science. San Francisco.
- [31] Rasgele, P.G. (2021). The Use of Allium Cepa L. Assay as Bioindicator for the Investigation of Genotoxic Effects of Industrial Waste Water. Archives of Environmental Protection 47(4), pp. 3–8. DOI:10.24425/aep.2021.139497.
- [32] Skwarek, E., Matysek-Nawrocka, M., Zarko, V. & Moiseevich, V. (2008). Adsorption of Heavy Metal Ions at the Al2O3-SiO2/NaClO4 Electrolyte Interface. Physicochemical Problems of Mineral Processing 42.
- [33] Sud, D., Mahajan, G. & Kaur, M. P. (2008). Agricultural Waste Material as Potential Adsorbent for Sequestering Heavy Metal Ions from Aqueous Solutions – A Review. Bioresource Technology, 99(14), pp, 6017–6027. DOI:10.1016/J.BIORTECH.2007.11.064.
- [34] Tran, H.N., You, S.J. & Chao, H.P. (2016). Thermodynamic Parameters of Cadmium Adsorption onto Orange Peel Calculated from Various Methods: A Comparison Study. Journal of Environmental Chemical Engineering 4(3), pp. 2671–2682. DOI:10.1016/J.JECE.2016.05.009.
- [35] Trus, I., Gomelya, M., Vorobyova, V. & Skіba, M. (2021). Promising Method of Ion Exchange Separation of Anions before Reverse Osmosis. Archives of Environmental Protection, 47(4), pp. 93–97. DOI:10.24425/aep.2021.139505.
- [36] Tumin, N., Chuah, A.L., Zawani, Z. & Suraya, A. R. (2008). Adsorption of Copper from Aqueous Solution by Elais Guineensis Kernel Activated Carbon. Journal of Engineering Science and Technology 3(2), pp. 180-189.
- [37] Veli, S. & Alyüz, B. (2007). Adsorption of Copper and Zinc from Aqueous Solutions by Using Natural Clay. Journal of Hazardous Materials 149(1), pp. 226–233. DOI:https://doi.org/10.1016/j.jhazmat.2007.04.109.
- [38] Vijayaraghavan, K., Teo, T.T., Balasubramanian, R. & Joshi, U.M. (2009). Application of Sargassum Biomass to Remove Heavy Metal Ions from Synthetic Multi-Metal Solutions and Urban Storm Water Runoff. Journal of Hazardous Materials 164(2–3), pp. 1019–1023. DOI:10.1016/J.JHAZMAT.2008.08.105.
- [39] Weber, T.W..& Chkravorti,R.K. (1974). Pore and Solid Diffusion Models for Fixed-Bed Adsorbers. AIChE Journal, 20(2), pp. 228–238. DOI:10.1002/aic.690200204.
- [40] Wu, H., Wu, Q., Zhang, J., Gu, Q., Wei, L., Guo, W. & He, M. (2019). Chromium Ion Removal from Raw Water by Magnetic Iron Composites and Shewanella Oneidensis MR-1. Scientific Reports, 9(1). DOI:10.1038/s41598-018-37470-1.
- [41] Yao, Z. Y., Qi, J. H. & Wang, L. H. (2010). Equilibrium, Kinetic and Thermodynamic Studies on the Biosorption of Cu(II) onto Chestnut Shell. Journal of Hazardous Materials 174(1–3), pp. 137–143. DOI:10.1016/J.JHAZMAT.2009.09.027.
- [42] Zendelska, A., Golomeova, M., Blazev, K., Krstev, B., Golomeov, B. & Krstev, A. (2015). Adsorption of Copper Ions from Aqueous Solutions on Natural Zeolite. Environment Protection Engineering, 41(4), pp. `,17–36. DOI:10.5277/epe150402.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-483eb12e-037b-46bb-a8e1-37b234ed5804