PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Exploration and Improvement of Room Temperature Properties for Organosilicon Slag Riser

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Organosilicon slag, generated as a waste product from organosilicon monomer production, had limited options for resource utilization. Previous experiments utilized recovered organosilicon slag to partially replace heating materials in preparing exothermic insulating risers. However, the incorporation of organosilicon slag led to specific issues in the risers including low compressive strength, high resin addition requirement and easy ignition during drying. In order to address these problems, this study analyzed the effects of resol resin parameters and organosilicon slag on the ambient temperature properties of heating insulating risers through single-factor experiments. In addition, adjustment was made to the drying process and an optimal preparation scheme was determined via orthogonal experiments. The purpose of the study was to prepare risers with reduced resin content, increased organosilicon slag addition and adequate compressive strength. Results showed that selecting a resin viscosity of about 170 mPa.s and resin addition of about 13% allowed for relatively good compressive strength and air permeability with less resin required. Additionally, an organosilicon slag addition of 18-21% and particle size under 30 mesh(550 μm) was beneficial for improving compressive strength. Adjusting the drying process to a two-step heat preservation approach (180°C for 25 min, then 130°C for 35 min) slightly decreased compressive strength compared to the original process; nevertheless, it improved air permeability and prevented the risers from igniting spontaneously during subsequent drying. The optimized preparation scheme determined through orthogonal experiments involved 150 mPa.s resin viscosity, 14% resin addition, 21% organosilicon slag addition and slag particle size less than 30 mesh (550 μm). This yielded a compressive strength of 4.21MPa and air permeability of 75.6, exceeding the standard of the exothermic insulating riser: GB/T13040-2017.
Rocznik
Strony
35--43
Opis fizyczny
Bibliogr. 17 poz., il., tab., wykr.
Twórcy
autor
  • School of Mechanical Engineering and Automation, Wuhan Textile University, China
  • School of Mechanical Engineering and Automation, Wuhan Textile University, China
autor
  • Wuhan Hanyuan Technology Development Co., Ltd, China
autor
  • Wuhan Textile University, School of Mechanical Engineering and Automation, China
autor
  • Wuhan Textile University, School of Mechanical Engineering and Automation, China
Bibliografia
  • [1] Lu, J.J., Qian, J.B., Yang, L. & Wang, H.F. (2023). Preparation and performance optimization of organosilicon slag exothermic insulating riser. Archives of Foundry Engineering. 23(1),75-82. DOI: 10.24425/afe.2023.144283.
  • [2] Krajewski, P.K., Zovko-Brodarac, Z. & Krajewski, W.K. (2013). Heat exchange in the system mould - Riser - Ambient. Part I: Heat exchange coefficient from mould external surface. Archives of Metallurgy and Materials. 58(3), 833-835. DOI: 10.2478/amm-2013-0081.
  • [3] Vaskova, I., Conev, M. & Hrubovakova, M. (2017). The influence of using different types of risers or chills on shrinkage production for different wall thickness for material EN-GJS-400-18LT. Archives of Foundry Engineering. 17(2), 131-136. DOI: 10.1515/afe-2017-0064.
  • [4] Sowa, L., Skrzypczak, T. & Kwiatoń, P. (2022). Numerical evaluation of the impact of riser geometry on the shrinkage defects formation in the solidifying casting. Archives of Metallurgy and Materials. 67(1), 181-187. DOI: 10.24425/amm.2022.137487.
  • [5] Lu, J.J., He, W., Tan, S.M., Qian, J.B. & Lu, X. (2021). Chinese Patent NO. 202110970771.3. Beijing. China National Intellectual Property Administration.
  • [6] Wang, E.Z., He, J.Y., Shen, J. & Yan, F.Y. (1993). Permeability of washings for vacuum evapouration-pattern casting. Special Casting & Nonferrous Alloys. 6, 1-3. DOI:10.15980/j.tzzz.1993.06.001. (in Chinese).
  • [7] Yu, J., Wang, D.D., Mao, L., Li, C.Y., Lu, S.D., Xu, Q.B. & Wang, W.Q. (2008). Application of LYH-3 dextrin binder in exothermic and insulating riser. Foundry Technology. 7, 873-876. (in Chinese).
  • [8] Zhao, X., Wang, Z.X., Zhang, W.Q., et al. (2022). The Efficacy of magnetization in enhancing flocculation and sedimentation of clay particles. Journal of Irrigation and Drainage. 41(3), 114-124. DOI: 10.13522/j.cnki.ggps.2021300. (in Chinese).
  • [9] Cai, Y.,Shi, B.,Liu, Z.B.,Tang, C.S. & Wang, B.J. (2005). Experimental study on effect of aggregate size on strength of filled soils. Chinese Journal of Geotechnical Engineering. 12, 1482-1486. (in Chinese).
  • [10] Kang, M., Wu, Y.L., Wang, W.Q. & Dai, X.Q. (1998). Effects of thermo-rheologic properties of thermo-plastic phenol resin on properties of resin-coated sand. Modern Cast Iron. 2, 11-13. (in Chinese).
  • [11] Dai, B.Y. (1996). Research on rheological property of phenol-formaldehyde resin for hot process. China Foundry Machinery & Technology. 5, 16-19. (in Chinese).
  • [12] Tang, L.L., Li, N.N. & Wu, P.X. (2008). High performance phenolic resin and its application technology. Beijing: Chemical Industry Press.
  • [13] Tong, L.L., Zhou, J.X., Yin, Y.J. & Li, Y.C. (2020). Effects of grain size and resin content on strength of furan resin sand. Special Casting & Nonferrous Alloys. 40(2), 139-142. DOI:10.15980/j.tzzz.2020.02.005. (in Chinese).
  • [14] Wang, W., Li, X.H., Gao, P.H., Zeng, S.C., Chen, B.Y., Yang, Z., Guo, Y.C. & Li, J.P. (2021). Study on optimization of gas evolution in resin sand moulds. Hot Working Technology. 50(15), 48-50. DOI:10.14158/j.cnki.1001-3814.20192900. (in Chinese).
  • [15] Li, C.S. (2012). Influence of properties and state of raw sand on properties of self-setting resin sand. Modern Cast Iron. 32(5), 63-68. (in Chinese).
  • [16] Zhu, Y.L. & Cai, Z.S. (1996). Analysis of the influence of original sand particle size on the strength of resin bonded sand. Foundry. 12, 37-38. (in Chinese).
  • [17] You, M. & Zheng, X.L. (1999). Theoretical analysis of the influence of original sand particle size on the strength of resin bonded sand. Foundry. 2, 42-44. (in Chinese).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-483d1aaf-356b-4ec3-80e4-8e36d94f7566
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.