PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of repeated vehicle braking on the warming of selected parts of the vehicle

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The friction brakes convert a significant part of a vehicle’s kinetic energy into thermal energy. Some of its parts is distributed to the places around the brakes, and another part is accumulated in several vehicle components. This article is focused on the measurement of temperature increase of selected vehicle components during re-deceleration. These components include brake discs, brake pads, calliper, wheel rim and tire side in the area of its bead and tread. The measurements were performed during the repeated braking of a fully-loaded vehicle according to ECE Regulation No 13 - type I.
Rocznik
Tom
Strony
183--196
Opis fizyczny
Bibliogr. 38 poz.
Twórcy
  • Faculty of Operation and Economics of Transport and Communications, Department of Road and Urban Transport, Universita of Zilina, Univerzitná 1 010 26, Slovakia
  • Faculty of Operation and Economics of Transport and Communications, Department of Road and Urban Transport, Universita of Zilina, Univerzitná 1 010 26, Slovakia
  • Faculty of Electrical Engineering, University of Zilina 1 Univerzitna Str., 01001 Zilina, Slovakia
  • Faculty of Electrical Engineering, University of Zilina 1 Univerzitna Str., 01001 Zilina, Slovakia
  • Faculty of Operation and Economics of Transport and Communications, Department of Road and Urban Transport, Universita of Zilina, Univerzitná 1 010 26, Slovakia
Bibliografia
  • 1. Kapusta J., A. Kalašová. 2015. „Motor vehicle safety technologies in relation to the accident rates“. Communications in Computer and Information Science: 172-179.
  • 2. Shyrokau B., D.W. Wang, K. Augsburg, V. Ivanov. 2013. „Vehicle dynamics with brake hysteresis”. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering 227(2): 139-150. DOI: 10.1177/0954407012451961.
  • 3. Ondruš J., J. Vrábel, E. Kolla. 2018. „The influence of the vehicle weight on the selected vehicle braking characteristics“. Transport means 2018. Part I: proceedings of the international scientific conference: 384-390. ISSN: 1822-296X 384-390.
  • 4. Hong Y., T. Jung, C. Cho. 2019. „Effect of heat treatment on crack propagation and performance of disk brake with cross drilled holes“. International journal of automotive technology 20(1): 177-185. DOI: 10.1007/s12239-019-0017-8.
  • 5. Vrábel J., J. Jagelčák, J. Zámečník, J. Caban. 2017. „Influence of emergency braking on changes of the axle load of vehicles transporting solid bulk substrates“. 10th International Scientific Conference on Transportation Science and Technology (TRANSBALTICA) 187: 89-99. DOI: 10.1016/j.proeng.2017.04.354.
  • 6. Grzes P. 2019. „Maximum temperature of the disc during repeated braking applications“. Advances in mechanical engineering 11(3). ISSN: 1687-8132. DOI: 10.1177/1687814019837826.
  • 7. Adamowicz A. 2016. „Effect of convective cooling on temperature and thermal stresses in disk during repeated intermittent braking“. Journal of friction and wear 37(2): 107-112. DOI: 10.3103/S1068366616020021.
  • 8. Yevtushenko A.A., P. Grzes. 2010. „The FEM-modeling of the frictional heating phenomenon in the pad/disc tribosystem (a review)“. Numerical heat transfer part Aapplications 58(3): 207-226. ISSN: 1040-7782. DOI: 10.1080/10407782.2010.497312.
  • 9. Ferodo. „Friction material data sheets“. Available at: https://www.ferodo.com/support/commercial-vehicles/cv-friction-material-datasheets.html.
  • 10. Janoško I., T. Polonec, R. Simor. 2010. „Electronic encyklopedia of construction engines and vehicles“. 41st International Scientific Conference of Czech and Slovak University Departments and Institutions Dealing with the Research of Internal Combustion Engines: 232-238. ISBN:978-80-7372-632-4.
  • 11. Caban J., P. Droździel, J. Vrábel, B. Šarkan, A. Marczuk, L. Krzywonos. 2016. „The research on ageing of glycol-based brake fluids of vehicles in operation“. Advances in Science and Technology Research Journal 10(32): 9-16.
  • 12. Avantor. „Safety data sheet“. Avaliable: https://www.avantorsciences.com/stibo/search/sdsmix000168_us_en.pdf.
  • 13. Kadhem A., Y. Sadiq, M. Enad. 2018. The effect of steel wire pre-tension on the tensile properties of bead ply in rubber tires. 2nd International Conference on Engineering Sciences-University-of-Kerbala (ICES-UoK) 433. DOI: 10.1088/1757-899X/433/1/012077.
  • 14. Čulík K., A. Kalašová, V. Harantová. 2019. „Creating a virtual environment for practical driving tests. Communications in Computer and Information Science 91049: 95-108. DOI: 10.1007/978-3-030-27547-1_8.
  • 15. Ivanov R. 2016. „Tire wear modeling“. Transport Problems 11(3): 111-120. DOI: 10.20858/tp.2016.11.3.11.
  • 16. Regulation No 13-H of the Economic Commission for Europe of the United Nations (UN/ECE) - Uniform provisions concerning the approval of passenger cars with regard to braking [2015/2364].
  • 17. Wernik J. 2014. „Investigation of heat loss from the finned housing of the electric motor of a vacuum pump“. Applied sciences – Basel 7(12). DOI: 10.3390/app7121214.
  • 18. Ondruš J., E. Kolla. 2017. “Practical use of the braking attributes measurements results”. 18th International Scientific Conference on LOGI 134. DOI: 10.1051/matecconf/201713400044.
  • 19. Adamowicz, A. 2016. „Finite element analysis of the 3D thermal stress state in a brake disk“. Journal of theoretical and applied mechanics 54(1): 205-218. ISSN: 1429-2955.
  • 20. Stopka O., A. Šarkan. 2018. „Quantification of road vehicle performance parameters under laboratory conditions“. Advances in Science and Technology Research Journal 12(3): 16-23.
  • 21. Cars-Data. „Kia Ceed 1.6 CVVT“. Available at: https://www.cars-data.com/en/kia-ceed1.6-cvvt-x-ecutive-specs/18902.
  • 22. Flrir. „Flir E60”. Available at: https://www.flir.com/support/products/e60/#Specifications.
  • 23. Janura R., M. Gutten, D. Korenčiak, M. Šebok. 2016. “Thermal processes in materials of oil transformers”. International Conference on Diagnostic of Electrical Machines and Insulating Systems in Electrical Engineering (DEMISEE): 81-84. ISBN: 978-1-5090-1249-7.
  • 24. Sicinska K. 2019. “Age of a passenger car and its influence on accidents with fatalities in Poland”. Transport Problems 14(1): 105-11. DOI: 10.20858/tp.2019.14.1.10.
  • 25. Figlus T., L. Kuczynski. 2018. “Selection of a semi-trailer for the haulage of long oversize loads, taking into account an analysis of operational damage”. XI International Science-Technical Conference Automotive Safety, IEEE Proceedings Paper. ISBN: 978-1-5386-4578-9.
  • 26. Koziol M., T. Figlus. 2017. “Evaluation of the failure progress in the static bending of gfrp laminates reinforced with a classic plain-woven fabric and a 3D fabric, by means of the vibrations analysis”. Polymer Composites 38(6): 1070-1085. DOI: 10.1002/pc.23670.
  • 27. Zhao S.D., Y. Yin, J.S. Bao, X.M. Xiao, et all. 2019. “Analysis and correction on frictional temperature rise testing of brake based on preset thermometry method”. Industrial lubrication and tribology 71(7): 907-914. DOI: 10.1108/ILT-10-2018-0376.
  • 28. Wallis L., E. Leonardi, B. Milton, P. Joseph. 2002. “Air flow and heat transfer in ventilated disc brake rotors with diamond and tear-drop pillars”. Numerical Heat Transfer, Part A 41(6-7): 643-655.
  • 29. Talati F., S. Jalalifar. 2008. “Investigation of heat transfer phenomena in a ventilated disk brake rotor with straight radial rounded vanes”. Journal of Applied Sciences 8(20): 3583-3592.
  • 30. Belhocine A., M. Bouchetara. 2012. „Thermal behavior of full and ventilated disc brakes of vehicles“. Journal of mechanical sciented and technology 26(11): 3643-3652. DOI: 10.1007/s12206-012-0840-6.
  • 31. Adamowicz A., P. Grzes. 2011. „Influence of convective cooling on a disc brake temperature distribution during repetitive braking”. Applied thermal engineering 31(14-15): 2177-2185. DOI: https://doi.org/10.1016/j.applthermaleng 2011.05.016.
  • 32. Yevetushenko A., P. Grzes. 2011. “Finite element analysis of heat partition in a pad/disc brake system”. Numerical heat transfer, Part A: Applications 59(7). DOI: https://doi.org/10.1080/10407782.2011.561098.
  • 33. Grzes P. 2017. “Determination of the maximum temperature at single braking from the FE solution of heat dynamics of friction and wear system of equations”. Numerical heat transfer part A – Applications 71(7): 737-753. DOI: 10.1080/10407782.2017.1308711.
  • 34. Soderberg A., S. Andersson. 2009. “Simulation of wear and contact pressure distribution at the pad-to-rotor interface in a disc brake using general purpose finite element analysis software”. Wear 267(12): 2243-2251. DOI: 10.1016/j.wear.2009.09.004.
  • 35. Gigan G., T. Vernersson, R. Lundén, P. Skoglund. 2015. “Disc brakes for heavy vehicles: an experimental study of temperatures and cracks”. Journal of Automobile engineering. 229(6): 684-707. DOI: 10.1177/0954407014550843.
  • 36. Adamowicz A., P. Grzes. 2011. “Analysis of disc brake temperature distribution during single braking under non-axisymmetric load”. Applied Thermal Engineering 31(6-7): 1003. DOI: ff10.1016/j.applthermaleng.2010.12.016ff.
  • 37. Kuranc A., G. Zajac, J. Szyslak, T. Slowik, J. Vrábel, B. Šarkan, et all. 2018. “Boiling point of the brake fluid based on alkyl ethers of alkylene glycols in vehicles being in use”. Przemysl Chemiczny 97(12): 2102-2105. DOI: 10.15199/62.2018.12.17.
  • 38. Afzal A., M.A. Mujeebu. 2019. “thermo-mechanical and structural performances of automobile disc brakes: a review of numerical and experimental studies”. Archives of Computational Methods in Engineering 26(5): 1489-1513. DOI: 10.1007/s11831-018-9279-y.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4833fdec-902e-48b0-93ba-0b90c2534137
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.