PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Biosurfactants’ production from renewable natural resources: example of innovativeand smart technology in circular bioeconomy

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Produkcja biosurfaktantów z naturalnych, odnawialnych źródeł: przykład innowacyjnej inteligentnej technologii w biogospodarce o obiegu zamkniętym
Języki publikacji
EN
Abstrakty
EN
A strong developed bio-based industrial sector will significantly reduce dependency on fossil resources, help the countries meet climate change targets, and lead to greener and more environmental friendly growth. The key is to develop new technologies to sustainably transform renewable natural resources into bio-based products and biofuels. Biomass is a valuable resource and many parameters need to be taken in to account when assessing its use and the products made from its. The bioeconomy encompass the production of renewable biological resources and their conversion into food, feed and bio-based products (chemicals, materials and fuels) via innovative and efficient technologies provided by industrial biotechnology. The paper presents the smart and efficient way to use the agro-industrial, dairy and food processing wastes for biosurfactant’s production. Clarification processes are mandatory to use the raw substrates for microbial growth as well as biosurfactant production for commercial purposes. At the same time it is very essential to retain the nutritional values of those cheap substrates. Broad industrial perspectives can be achieved when quality as well as the quantity of the biosurfactant is considered in great depth. Since substrates resulting from food processing, dairy, animal fat industries are not explored in great details; and hence are potential areas which can be explored thoroughly.
PL
Intensywny rozwój bioprzemysłu istotnie przyczyni się do redukcji zużycia zasobów kopalnianych, pomóc krajom spełnić cele związane ze zmianami klimatu oraz przyczynić się do rozwoju gospodarki przyjaznej środowisku (zielony rozwój). Głównym założeniem jest rozwój nowych technologii umożliwiających przekształcenie naturalnych odnawialnych źródeł do wartościowych bioproduktów i biopaliw. Biomasa jest takim podstawowym źródłem, posiadającym odpowiednie parametry, żeby wykorzystywać ją do produkcji wielu substratów używanych w różnych gałęziach przemysłu. Biogospodarka obejmuje produkcję odnawialnych zasobów biologicznych i ich przetwarzanie do różnych finalnych produktów (żywność, pasza, chemikalia, materiały, paliwa) poprzez innowacyjne i efektywne technologie oparte na procesach biotechnologii przemysłowej. Artykuł przedstawia inteligentny i skuteczny sposób wykorzystania odpadów z różnych gałęzi przemysłu rolno-spożywczego do produkcji biosurfaktantów.
Wydawca
Rocznik
Tom
Strony
46--54
Opis fizyczny
Bibliogr. 71 poz., rys., tab.
Twórcy
  • Center for Advanced Studies in Materials Science and Condensed Matter, Department of Physics, Savitirbai Phule Pune University Pune 411007, Maharashtra, INDIA
autor
  • Silesian University of Technology, Faculty of Organisation and Management Institute of Production Engineering ul. Roosevelta 26-28, 41-800 Zabrze, POLAND
  • Center for Advanced Studies in Materials Science and Condensed Matter, Department of Physics, Savitirbai Phule Pune University Pune 411007, Maharashtra, INDIA
Bibliografia
  • [1] “Innovating for Sustainable Growth: A Bioeconomy for Europe”, COM, Brussels, 2012.
  • [2] A.R.C. Morais and R. Bogel-Lukasik. „Green chemistry and the biorefinery concept”, in Sustainable Chemical Processes, vol. 1(18), 2013, pp. 56-69.
  • [3] F. Fava, G. Totaro, L. Diels et al. „Bio waste biorefinery in Europe: opportunities and research and development needs”, in New Biotechnology, vol. 32(1), 2015, pp. 100-108.
  • [4] Joint European Biorefinery Vision for 2030. Star – COLIBRI – Strategic targets for 2020 – collaboration initiative on biorefineries, 2011.
  • [5] F. Cherubini. „The biorefinery concept: using biomass instead of oil for producing energy and chemicals”, in Energy Convers Management, vol. 51(7), 2010, pp. 1412-1421.
  • [6] E. de Jong, R. van Ree, I.K. Kwant et al. „Biorefineries: Adding Value to the Sustainable Utilisation of Biomass”, in IEA Bioenergy, vol. 1, 2009, pp. 1-16.
  • [7] T. Gabrielczyk. „Can Europe stop the stream of wastes?”, in European Biotechnology, vol. 15, 2016, pp. 50-55.
  • [8] L.A. Pfaltzgraff and J.K. Clark. „Green chemistry, biorefineries and second generation strategies for re-use of waste: an overview”, in Advances in Biorefineries, K. Waldron, Cambridge: Woodhead Publishing Limited, 2014, pp. 3-33.
  • [9] I.M. Banat, S.K. Satpute, S.S. Cameotra, R. Patil and N.V. Nyayanit. „Cost effective technologies and renewable substrates for biosurfactants’ production”, in Frontiers in Microbiology, vol. 5, 2014, pp. 697-708.
  • [10] R.S. Makkar and S.S. Cameotra. „An update on the use of uncoventional substrates for biosurfactant production and their new applications”, in Applied Microbiology and Biotechnology, vol. 58(4), 2002, pp. 428-434.
  • [11] C.N. Mulligan, S.K. Sharma and A. Mudhoo. Biosurfactants. Research Trends and Applications, Boca Raton: CRC Press, Taylor&Francis Group, 2014.
  • [12] A.A. Bodour and R.M. Maier. „Biosurfactants: types, screening methods and applications”, in Encyclopedia of Environmental Microbiology, vol. 2, New York: John Wiley & Sons Inc., 2001, pp. 750-770.
  • [13] G. Soberon-Chavez. Biosurfactants: From genes to applications, Berlin-Heidelberg: Springer-Verlag Berlin Heidelberg, 2011.
  • [14] J.M. Campos, T.L.M. Stamford, L.A. Sarubbo et al. „Microbial biosurfactants as additives for food industries”, in Biotechnology Progress, vol. 29(5), 2013, pp. 1097-1108.
  • [15] G.S. Hartley. Aqueous solutions of paraffin chain salts. A study in micelle formation, Paris: Hermann et Cie, 1936.
  • [16] L.S. Romsted. „Micellar Catalysis of Diels-Alder Reactions: Substrate Positioning in the Micelle, in Micellization solubilsation and micro emulsions, vol. 2, K.L. Mittal, New York: Plenum Press, 1977, pp. 95-119.
  • [17] M.J. Rosen. Surfactant and interfacial phenomena, 3rd ed., New York: Wiley, 2004.
  • [18] P. Mukerjee and K.J. Mysels. „Critical micelle concentrations of aqueous surfactant systems nonionic detergents”, no NSRDS-NBS 36, National Standard Reference Data System, 1971.
  • [19] R. Mandavi. „Kinetic studies of some esters and amides in presence of micelles”, chapter 2, Ph.D. dissertation, Pt. Ravishankar Shukla University Raipur (CG), India Department of Chemistry, 2011.
  • [20] M.R. Porter. Handbook of Surfactants, 2nd ed., London: Chapman & Hall, 1994.
  • [21] A.L. Hunter. Foundations of colloid science, vol. 1-2, Oxford: Clarendon, 1987.
  • [22] A. Ray and G. Nemethy. „Effects of ionic protein denaturants on micelle formation by nonionic detergents”, in Journal of American Chemical Society, vol. 93(25), 1971, pp. 6787-6793.
  • [23] M.M. Rieger. „The Skin irritation potential of quaternaries”, in Journal of the Society of Cosmetic Chemists, vol. 48, 1997, pp. 307-317.
  • [24] M.E. Mahmood and D.A.F. Al-Koofee. „Effect of temperature changes on critical micelle concentration for Tween series surfactant”, in Global Journal of Science Frontier Research. Chemistry, vol. 13(4), 2013, pp. 1-5.
  • [25] L.H. Guerra-Santos, O. Kappeli and A. Fiechter. „Dependence of Pseudomonas aeruginosa continuous culture biosurfactant production on nutritional and environmental factors”, in Applied Microbiology and Biotechnology, vol. 24(6), 1986, pp. 443-448.
  • [26] A. Fiechter. „Biosurfactants: moving towards industrial application”, in Trends Biotechnology, vol. 10, 1992, pp. 208-217.
  • [27] C. Syldatk and F. Wagner. „Production of biosurfactants”, in Biosurfactants and Biotechnology, N. Kosaric, W.L. Cairns and N.C.C. Gray, New York: Marcel Dekker Inc., 1987, pp. 89-120.
  • [28] S.K. Satpute, S.S.Bhuyan, K.R. Pardesi et al. „Chapter 2: Molecular Genetics of Biosurfactant Synthesis in Microorganisms”, in Biosurfactants, R. Sen, New York: Springer-Verlag New York, 2010.
  • [29] Y. Prabhu and P.S. Phale. „Biodegradation of phenanthrene by Pseudomonas sp. strain PP2: novel metabolic pathway, role of biosurfactant and cell surface hydrophobicity in hydrocarbon assimilation”, in Applied Microbiology and Biotechnology, vol. 61(4), 2003, pp. 342-351.
  • [30] C.D. Cunha, M. Rosario, A.S. Rosado and G.F. Leite. „Serratia sp. SVGG16: A promising biosurfactant producer isolated from tropical soild during growth with ethanol blended gasoline”, in Process Biochemistry, vol. 39, 2004, pp. 2277-2282.
  • [31] Z.A. Raza, M.S. Khana, Z.M. Khalidb and A. Rehman. „Production of biosurfactant using different hydrocarbons by Pseudomonas aeruginosa, in Journal of Biosciences: vol.61(1-2), 2006, pp. 87-94.
  • [32] Z.A. Raza, M.S. Khan and Z.M. Khalid. „Physicochemical and surface active properties of bio-surfactant produced using molasses by a Pseudomonas aeruginosa mutant”, in Journal of Environmental Science and Health. Toxic Hazardous Substances and Environmental Engineering, vol. 42(1), 2007, pp. 73-80.
  • [33] F.F.C. Barros, C.P. Quadros, M.R. Maróstica and G.M. Pastore. „Surfactina: Propriedades químicas, technológicas e funciona is para aplicações em alimentos”, in Química Nova, vol. 30(2), 2007, pp. 1-14.
  • [34] S.G. Kapadia and B.N. Yagnik. „Current trend and potential for microbial biosurfactants”, in Experimental Biological Science, vol. 4, 2013. pp. 234-251.
  • [35] R.M. Patel and A.J. Desai. „Biosurfactant production by Pseudomonas aeruginosa GS3 from molasses”, in Letter Applied Microbiology, vol. 25, 1997, pp. 91-94.
  • [36] K. Dubey and A. Juwarkar. „Distillery and curd whey wastes as viable alternative sources for biosurfactant production”, in World Journal of Microbiology and Biotechnology, vol. 17, 2001, pp. 61-69.
  • [37] M. Benincasa, J. Contiero, M.A. Manresa and I.O. Moraes. „Rhamnolipid production by Pseudomonas aeruginosa LBI growing on soap stocks the sole carbon source”, in Journal of Food Engineering, vol. 54(4), 2002, pp. 283-288.
  • [38] Z.A. Raza, A. Rehman, M.S. Khan and Z.M. Khalid. „Improved production of biosurfactant by a Pseudomonas aeruginosa mutant using vegetable oil refinery wastes”, in Biodegradation, vol. 18, 2007, pp. 115-121.
  • [39] A.B. Moldes, A.M. Torrado, M.T. Barral and J.M. Domínguez. „Evaluation of biosurfactant production from various agricultural residues by Lactobacillus pentosus”, in Journal of Agriculture and Food Chemistry, vol. 55(11), 2007, pp. 4481-4486.
  • [40] M. Deshpande and L. Daniels. „Evaluation of sophorolipid biosurfactant production by Candida bombicola using animal fat”, in Bioresource Technology, vol. 54, 1995, pp. 143-150.
  • [41] H.J. Daniel, M. Reuss and C. Syldatk. „Production of sophorolipids in high concentration from deproteinized whey and rapeseed oil in a two stage fed batch process using Candida bombicola ATCC22214 and Cryptococcus curvatusATCC20509”, in Biotechnology Letter, vol. 20, 1998, pp. 1153-1156.
  • [42] H.J. Daniel, R.T. Otto, M. Binder, M. Reus and C. Syldatk. „Production of sophorolipids from whey: development of a two-stage process with Cryptococcus curvatus ATCC20509 and Candida bombicola ATCC22214 using deproteinized whey concentrates as substrates”, in Applied Microbiology and Biotechnology, vol. 51(1), 1999, pp. 40-45.
  • [43] A. Daverey, K. Pakshirajan and P. Sangeetha. „Sophorolipids production by Candida bombicola using synthetic dairy waste water”, in World Academy of Science, Engineering and Technology, vol. 3, 2009, pp. 470-472.
  • [44] M. Govindammal and R. Parthasarathi. „Biosurfactant production using pineapple juices medium by Pseudomonas fluorescens isolated from mangrove forest soil”, in Indian Streams Research Journal, vol. 2(12), 2013, pp. 1-10.
  • [45] D.G. Cooper and D.A. Paddock. „Production of a bio-surfactant from Torulopsis bombicola”, in Applied Environment, vol. 47(1), 1984, pp. 173-176.
  • [46] C.S. Chooklin, S. Phertmean, B. Cheirsilp, S. Maneerat and A. Saimmai. „Utilization of palm oil mill effluent as a novel and promising substrate for biosurfactant production by Nevskia ramosa NA3”, in Songklanakarin Journal of Science and Technology, vol. 35(2), 2013, pp. 167-176.
  • [47] R. Thavasi, V.R.M. Subramanyam Nambaru, S. Jayalakshmi, T. Balasubramanian and I. M. Banat. „Biosurfactant production by Azotobacter chroococcum isolated from the marine environment”, in Marine Biotechnology, vol. 11, 2009, pp. 551-556.
  • [48] S.K. Satpute, B.D. Bhawsar, P.K. Dhakephalkar and B.A. Chopade. „Assessment of different screening methods for selecting biosurfactant producing marine bacteria”, in Indian Journal of Marine Sciences, vol. 37(3), 2008, pp. 243-250.
  • [49] S. Bergström, H. Theorell and H. Davide. „On a metabolic product of Ps. pyocyanea. Pyolipic acid, active against M. tuberculosis”, in Archives of Chemistry, Mineralogy and Geology., vol. 23A (13), 1946, pp. 1-12.
  • [50] S. Bergström, H. Theorell and H. Davide. „Pyolipic acid. A metabolic product of Pseudomonas pyocyanea active against Mycobacterium tuberculosis”, in Archives of Biochemistry and Biophysics, vol. 10, 1946, pp. 165-166.
  • [51] F.G. Jarvis and M.J. Johnson. „A glycolipid produced by Pseudomonas aeruginosa”, in Journal of American Chemical Society, vol. 71(12), 1949, pp. 4124-4126.
  • [52] K. Hisatsuka, T. Nakahara, N. Sano and K. Yamada. „Formation of rhamnolipid by Pseudomonas aeruginosa and its function in hydrocarbon fermentation”, in Agricultural Biology Chemistry, vol. 35(5), 1971, pp. 686-692.
  • [53] M.G. Rikalović, M. Vrvić and M.I. Karadžić. „Rhamnolipid biosurfactant from Pseudomonas aeruginosa – from discovery to application in contemporary technology”, in Journal of the Serbian Chemical Society, vol. 80(3), 2015, pp. 279-304.
  • [54] E. Haba, M.J. Espuny, M. Busquets and A. Manresa. „Screening and production of rhamnolipids by Pseudomonas aeruginosa 47T2 NCIB40044 from waste frying oils”, in Journal of Applied Microbiology, vol. 88(3), 2000, pp. 379-387.
  • [55] M. Rashedi, M. Assadi, E. Jamshidi and B. Bonakdarpour. „Production of rhamnolipids by Pseudomonas aeruginosa growing on carbon sources”, in International Journal of Enviornmental Science and Technology, vol. 3(3), 2006, pp. 297-303.
  • [56] E.J. Gudiña, A.I. Rodrigues, E. Alves et al. „Bioconversion of agro-industrial by-products in rhamnolipids toward applications in enhanced oil recovery and bioremediation”, in Bioresource Technology, vol. 177, 2015, pp. 87-93.
  • [57] S.A. Monteiro, G.L. Sassaki, L.M. de Souza et al. „Molecular and structural characterization of the biosurfactant produced by Pseudomonas aeruginosa DAUPE 614”, in Chemistry and Physics of Lipids, vol. 147(1), 2007, pp. 1-13.
  • [58] M.E. Mercade, A. Manresa, M. Robert et al. „Olive oil mill effluent (OOME) new substrate for biosurfactant production”, in Bioresource Technology, vol. 43, 1993, pp. 1-6.
  • [59] Z.A. Raza, A. Rehman, M.S. Khan and Z.M. Khalid. „Improved production of biosurfactant by a Pseudomonas aeruginosa mutant using vegetable oil refinery wastes”, in Biodegradation, vol. 18(1), 2007, pp. 115-121.
  • [60] S. George and K. Jayachandran. „Production and characterization of rhamnolipid biosurfactant from waste frying coconut oil using a novel Pseudomonas aeruginosa D”, in Journal of Applied Microbiology, vol. 114(2). 2013, pp. 343-383.
  • [61] R.S. Makkar and S.S. Cameotra. „Utilization of molasses for biosurfactant production by two Bacillus trains at thermophilic conditions”, in Journal of the American Oil Chemists’ Society, vol. 74(7), 1997, pp. 887-889.
  • [62] S. Joshi, C. Bharucha, S. Jha et al. „Biosurfactant production using molasses and whey under thermophilic conditions”, in Bioresource Technology, vol. 99(1), 2008, pp. 195-199.
  • [63] S.L. Fox and G.A. Bala. „Production of surfactant from Bacillus subtilis ATCC 21332 using potato substrates”, in Bioresource Technology, vol. 75(3), 2000, pp. 235-240.
  • [64] D.N. Thompson, S.L. Fox and G.A. Bala. “Biosurfactants from potato process effluents”, in Applied Biochemistry and Biotechnology, vol. 84(1), 2000, pp. 917-930.
  • [65] H.J. Daniel, R.T. Otto, M. Reuss and C. Syldatk. “Sophorolipid production with high yields on whey concentrate and rapeseed oil with consumption of lactose”, in Biotechnology Letter, vol. 20, 1998, pp. 805-807.
  • [66] H.S. Kim, Y.B. Kim, B.S. Lee and E.K. Kim. “Sophorolipid production by Candida bombicola ATCC 22214 from a corn oil processing by product”, in Journal of Microbiology and Biotechnology, vol. 15(1), 2005, pp. 55-58.
  • [67] A. E. Elshafie, S.J. Joshi, Y.M. Al-Wahaibi et al. „Sophorolipids production by Candida bombicola ATCC 22214 and its potential application in microbial enhanced oil recovery”, in Frontier Microbiology, vol. 6, 2015, pp. 1324-1337.
  • [68] A. Daverey and K. Pakshirajan. “Pretreatment of synthetic dairy waste water using the sophorolipid producing yeast Candida bombicola”, in Applied Biochemistry and Biotechnology, vol. 163(6), 2011, pp. 720-728.
  • [69] M. Nitschke M, Pastore, G. M. Biossurfactantes: Propriedades e aplicações. Quim Nova 25, 2002, pp. 772-776.
  • [70] C. D. Coimbra, R. D. Rufino J. M. Luna, L. A. Sarubbo. “Studies of the cell surface properties of Candida species and relation to the production of biosurfactants for environmental applications”, Current Microbiology 58,2009, pp. 245-251.
  • [71] P. B. Singh and H. Singh Saini Biotransformation of Waste Biomass into High Value Biochemicals, Chapter: 18. Exploitation of agro-industrial wastes to produce low cost microbial surfactants, Publisher: Springer New York, Editors: Satinder Kaur Brar, Gurpreet Singh Dhillon, Carlos Ricardo Soccol, pp.445-471.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4832a26d-9d20-48f8-987f-99e44b7e6166
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.