PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Structural, morphological and photoluminescent properties of annealed ZnO thin layers obtained by the rapid sol-gel spin-coating method

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
ZnO thin layers were deposited on p-type silicon substrates by the sol-gel spin-coating method and, then, annealed at various temperatures in the range of 573-873 K. Photoluminescence was carried out in the temperature range of 20-300 K. All samples showed two dominant peaks that have UV emissions from 300 nm to 400 nm and visible emissions from 400 nm to 800 nm. Influence of temperature on morphology and chemical composition of fabricated thin layers was examined by XRD, SEM, FTIR, and Raman spectroscopy. These measurements indicate that ZnO structure is obtained for samples annealed at temperatures above 573 K. It means that below this temperature, the obtained thin films are not pure zinc oxide. Thus, annealing temperature significantly affected crystallinity of the thin films.
Twórcy
  • Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Torun, 5 Grudziadzka St., Torun 87-100, Poland
  • Faculty of Chemistry, Nicolaus Copernicus University in Torun, 7 Gagarina St., Torun 87-100, Poland
  • Institute of Physics, Kazimierz Wielki University in Bydgoszcz, 2 Powstańców Wielkopolskich St., 85-090, Bydgoszcz, Poland
  • Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Torun, 5 Grudziadzka St., Torun 87-100, Poland
  • Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Torun, 5 Grudziadzka St., Torun 87-100, Poland
Bibliografia
  • [1] Özgür, Ü. et al. A comprehensive review of ZnO materials and devices. J. Appl. Phys. 98, 1–105 (2005). https://doi.org/10.1063/1.1992666
  • [2] Khan, Z. R., Khan, M. S. & Zulfequar, M. Optical and Structural Properties of ZnO Thin Films Fabricated by Sol-Gel Method. Mater. Sci. Appl. 2, 340–345 (2011). https://doi.org/10.4236/msa.2011.25044
  • [3] Shen, W., Zhao, Y. & Hang, C. The preparation of ZnO based gas-sensing thin films by ink-jet printing method. Thin Solid Films 483, 382–387 (2005). https://doi.org/10.1016/j.tsf.2005.01.015
  • [4] Fan, J. & Frezer, R. The roles played by Ag and Al dopants in controlling the electrical properties of ZnO varistors. J. Appl. Phys. 77, 4795–4800 (1995). https://doi.org/10.1061/1.359398
  • [5] Szuszkiewicz, W. & Dynowska, E. Are values of parameters des-cribing magnetic properties of crystal really fixed? J. Alloys Compd. 401, 272–280 (2005). https://doi.org/10.1016/j.jallcom.2005.02.048
  • [6] Klingshirn, C. ZnO: Material, Physics and Applications. Chem. Phys. Chem. 8, 82–803 (2007). https://doi.org/10.1002/cphc.200700002
  • [7] Morkoc, H. & Ozgur, U. Zinc oxide: materials preparation, properties and devices. (WILEY: New York, 2008). https://doi.org/10.1002/9783527623945
  • [8] Ellmer, K. & Mientus, R. Carrier transport in polycrystalline ITO and ZnO:Al II: The influence of grain barriers and boundaries. Thin Solid Films 516, 5829–5835 (2008). https://doi.org/10.1016/j.tsf.2007.10.082
  • [9] Kim, H. et al. Transparent conducting aluminium-doped zinc oxide thin films for organic light-emitting devices. Appl. Phys. Lett. 76, 259–261 (2000). https://doi.org/10.1063/1.125740
  • [10] Hoffman, R. L., Norris, B. J. & Wager, J. F. ZnO-based transparent thin-film transistors. Appl. Phys. Lett. 82, 733–735 (2003). https://doi.org/10.1063/1.1542677
  • [11] Kulyk, B. et al. Structural Properties and Temperature Behaviour of Optical Absorption Edge in Polycrystalline ZnO:X (Cu,Ag) Films. Acta Phys. Pol. A 123, 92–97 (2013). https://doi.org/10.12693/APhysPolA.123.92
  • [12] Abed, S. et al. Nonlinear optical properties of zinc oxide doped bismuth thin films using Z-scan technique. Opt. Mater. 56, 40–44 (2016). https://doi.org/10.1016/j.optmat.2015.12.014
  • [13] Waszkowska, K. et al. Influence of ZnO nanoparticles on nonlinear optical properties of auronebased polymeric thin films. Appl. Nanosci. (2020). https://doi.org/10.1007/s13204-020-01373-3
  • [14] Tsukazaki, A. et al. Repeated temperature modulation epitaxy for p-type doping and light-emitting diode based on ZnO. Nature Mater. 4, 42–46 (2005). https://doi.org/10.1038/nmat1284
  • [15] Farooqi, M. M. H. & Srivastava, R. K. Effect of Annealing Temperature on Structural, Photoluminescence and Photoconductivity Properties of ZnO Thin Film Deposited on Glass Substrate by Sol–Gel Spin Coating Method. Proc. Natl. Acad. Sci. India Sect. A Phys. Sci. (2019) https://doi.org/10.1007/s40010-019-00648-x
  • [16] Tiwari, A. & Sahay, P. P. Sn–Ga co-doping in sol-gel derived ZnO thin films: Studies of their microstructural, optical, luminescence and electrical properties. Materials Science in Semiconductor Processing 118, 105178-1–105178-9 (2020). https://doi.org/10.1016/j.mssp.2020.105178
  • [17] Rhouma, F. I. H. et al. The structure and photoluminescence of a ZnO phosphor synthesized by the sol gel method under praseodymium doping. RSC Adv. 9, 5206–5217 (2019). https://doi.org/10.1039/C8RA09939A
  • [18] Natsume, Y. & Sakata, H. Electrical and optical properties of zinc oxide films post-annealed in H2 after fabrication by sol-gel process. Mater. Chem. Phys. 78, 170–176 (2002). https://doi.org/10.1016/S0254-0584(02)00314-0
  • [19] Luna-Arredondo, E. J. et al. Indium-doped ZnO thin films deposited by the sol-gel technique. Thin Solid Films 490, 132–136 (2005). https://doi.org/10.1016/j.tsf.2005.04.043
  • [20] Farley, N. R. et al. Sol-gel formation of ordered nanostructured doped ZnO films, J. Mater. Chem. 14, 1087–1092 (2004). https://doi.org/10.1039/B313271D
  • [21] Barwiolek, M., Szczęsny, R. & Szłyk, E. Copper(II) Schiff base complexes and their mixed thin layers with ZnO nanoparticles. J. Chem. Sci. 128, 1057–1066 (2016). https://doi.org/10.1007/s12039-016-1116-y
  • [22] Abed, S. et al. Influence of concentration of nano particles of Bi on the electrical and optical properties of ZnO thin films. Superlattices Microstruct. 85, 370–378 (2015). https://doi.org/10.1016/j.spmi.2015.06.008
  • [23] Sofiani, Z. et al. Third harmonic generation in undoped and X doped ZnO films (X: Ce, F, Er, Al, Sn) deposited by Spray Pyrolysis. J. Appl. Phys. 101, 063104 (2007). https://doi.org/10.1063/1.2711143
  • [24] Figà, V., Derbal Habak H., Kulyk B. & Abbate M. Fluorescence Quenching in Hybrid Solar Cells Based on Electrodeposited ZnO, J. Optoelectron. Adv. Mater. 15, 954–959 (2013).
  • [25] Anand V.K., Sood, S.C. & Sharma, A. Characterization of ZnO Thin Film Deposited by Sol-Gel Process. AIP Conference Proceedings 1324, 399–401 (2010). https://doi.org/10.1063/1.3526243
  • [26] Speaks, D. T. Effect of concentration, aging, and annealing on sol gel ZnO and Al-doped ZnO thin films. International Journal of Mechanical and Materials Engineering 15, 1–14 (2020). https://doi.org/10.1186/s40712-019-0113-6
  • [27] Dislich, H. Sol-gel: science, processes and products. J. Non-Cryst. Solids 80, 115–121 (1986). https://doi.org/10.1016/0022-3093(86)90384-4
  • [28] Yang, C. Y., Pan, F., Zeng, F. & Liu, M. Switching mechanism transition induced by annealing treatment in nonvolatile Cu/ZnO/Cu/ZnO/Pt resistive memory: From carrier trapping/ detrapping to electrochemical metallization. J. Appl. Phys. 106, 1–4 (2009). https://doi.org/10.1063/1.3273329
  • [29] Danks, A. E., Hall, S.R. & Schnepp, Z. The evolution of sol-gel chemistry as a technique for materials synthesis. Mater. Horiz. 3, 91–112 (2016). https://doi.org/10.1039/C5MH00260E
  • [30] Bahadur, H., Srivastava, A. K., Sharma, R. K. & Chandra, S. Morphologies of Sol-Gel Derived Thin Films of ZnO Using Different Precursor Materials and their Nanostructures. Nanoscale Res. Lett. 2, 469–475 (2007). https://doi.org/10.1007/s11671-007-9089-x
  • [31] Sahal, M., Hartiti, B., Ridah, A., Mollar, M., Marı, B. Structural, electrical and optical properties of ZnO thin films deposited by sol-gel method. Microelectron. J. 39, 1425–1428 (2008). https://doi.org/10.1016/j.mejo.2008.06.085
  • [32] Miller, J. B., Hsin-Jung, H. & Howard, B. H. Microstructural evolution of sol-gel derived ZnO thin films. Thin Solid Films 518, 6792–6798 (2010). https://doi.org/10.1016/j.tsf.2010.06.032
  • [33] Murali, K. R. Properties of sol-gel dip-coated zinc oxide thin films. J. Phys. Chem. Solids 68, 2293–2296 (2007). https://doi.org/10.1016/j.jpcs.2007.06.006
  • [34] Hosseini Vajargah, P., Abdizadeha, H., Ebrahimifard, R. & Golobostanfard, M. R. Sol-gel derived ZnO thin films: Effect of amino-additives. Appl. Surf. Sci. 285, 732–743 (2013). https://doi.org/10.1016/j.apsusc.2013.08.118
  • [35] Brinker, C. J. & Scherer, G. W. Sol-gel science: the physics and chemistry of sol-gel processing. (Academic Press: Boston USA, 1990). https://doi.org/10.1016/B978-0-08-057103-4.50006-4
  • [36] Znaidi, L., Soler-Illia, G. J., Le Guennic, R., Kanaev, A. & Sanchez, C. Elaboration of ZnO Thin Films with Preferential Orientation by a Soft Chemistry Route. J. Sol-Gel Sci. Tech. 26, 817–821 (2003). https://doi.org/10.1023/A:1020795515478
  • [37] Sakthivel, S. et al. Solar photocatalytic degradation of azo dye: comparison of photocatalytic efficiency of ZnO and TiO2. Sol. Energy Mater. Sol. Cells 77, 65–82 (2003). https://doi.org/10.1016/S0927-0248(02)00255-6
  • [38] Popielarski, P. et al. Persistent photoconductivity in ZnO thin films grown on Si substrate by spin coating method. Opt. Mater. 97, 109343 (2019). https://doi.org/10.1016/j.optmat.2019.109343
  • [39] Lopez-Mena, E., Jimenez-Sandowal, E. & Jimenez-Sandowal, O. ZnO thin films prepared at low annealing temperatures, from a novel, simple sol-gel precursor solution. J. Sol- Gel Sci. Technol. 74, 419–424 (2015). https://doi.org/10.1007/s10971-014-3612-1
  • [40] Prasada Rao, T. & Santhoshkumar, M.C. Effect of thickness on structural, optical and electrical properties of nanostructured ZnO thin films by spray pyrolysis. Appl. Surf. Sci. 255, 4579–4584 (2009). https://doi.org/10.1016/j.apsusc.2008.11.079
  • [41] Sendi, R. K. & Mahmud, S. Stress control in ZnO nanoparticle-based discs via high-oxygen thermal annealing at various temperatures. J. Phys. Sci. 24, 1–15 (2013).
  • [42] Hong, R., Huang, J., He, H., Fan, Z. & Shao, J. Influence of different post-treatments on the structure and optical properties of zinc oxide thin films. Appl. Surf. Sci. 242, 346–352 (2005). https://doi.org/10.1016/j.apsusc.2004.08.037
  • [43] Rusu, D. I., Rusu, G.G. & Luca, D. Structural characteristics and optical properties of thermally oxidized zinc films. Acta Phys. Pol. A 119, 850–856. (2011) https://doi.org/10.12693/APhysPolA.119.850
  • [44] Popielarski, P. et al. Raman and impedance spectroscopy of blend polycarbonate and Zinc Oxide layers grown by sol-gel method. Solid State Phenom. 200, 22–26 (2013). https://doi.org/10.4028/www.scientific.net/SSP.200.22
  • [45] Bala, W. et al. Optical and electrical properties of ZnO thin films grown by sol-gel method. Solid State Phenom. 200, 14–21 (2013). https://doi.org/10.4028/www.scientific.net/SSP.200.14
  • [46] Yahiaa, B., Znaidi, L., Kanaeva, A. & Petitet, J. P. Raman study of oriented ZnO thin films deposited by sol-gel method. Spectrochim. Acta A 71, 1234–1238 (2008). https://doi.org/10.1016/j.saa.2008.03.032
  • [47] Russo, V., Ghidelli, M., Gondoni, P., Casari, C. S. & Li Bassi, A. Multi-wavelength Raman scattering of nanostructured Al-doped zinc oxide. J. Appl. Phys. 115, 073508 (2014). https://doi.org/10.1063/1.4866322
  • [48] Yi, S. H., Choi, S. K., Jang, J. M., Kim, J. A. & Jung, W. G. Low-temperature growth of ZnO nanorods by chemical bath deposition. J. Colloid Interface Sci. 313, 705–710 (2007). https://doi.org/10.1016/j.jcis.2007.05.006
  • [49] Kashif, M. et al. Effect of different seed solutions on the morphology and electrooptical properties of ZnO nanorods. J. Nanomater. 2012, 1–6 (2012). https://doi.org/10.1155/2012/452407
  • [50] Ungula, J., Dejene, B. F. & Swart, H. C. Effect of annealing on the structural, morphological and optical properties of Ga-doped ZnO nanoparticles by reflux precipitation method. Results Phys. 7 2022–2027 (2017). https://doi.org/10.1016/j.rinp.2017.06.019
  • [51] Gomi, M., Oohira, N., Ozaki, K. & Koyano, M. Photoluminescent and structural properties of precipitated ZnO fine particles. Japan. J. Appl. Phys. 42, 481–485 (2003). https://doi.org/10.1143/JJAP.42.481
  • [52] Janotti, A. & Van de Walle, C. G. Native point defects in ZnO. Phys. Rew. B 76, 165202 (2007). https://doi.org/10.1103/PhysRevB.76.165202
  • [53] Abrarov, S. M., Yuldashev, Sh. U., Kim, T. W., Kwon, Y. H. & Kang, T.W. Deep level emission of ZnO nanoparticles deposited inside UV opal. Opt. Commun. 259, 378–384 (2005). https://doi.org/10.1016/j.optcom.2005.08.048
  • [54] Sedky, A., Mossad Ali, A. & Mohamed, M. Structural and optical investigation of pure and Al doped ZnO annealed at different temperatures. Opt. Quantum Electron. 52:42, 1–21 (2020). https://doi.org/10.1007/s11082-019-2158-4
  • [55] Wang, Z. M. MoS2: Materials, Physics, and Devices. (Springer: 2014). https://doi.org/10.1007/978-3-319-02850-7_8
  • [56] Kukreja, L. M. & Misra, P. Photoluminescence Processes in ZnO Thin Films and Quantum Structures. In ZnO Nanocrystals and Allied Materials. (Springer 2014). https://doi.org/10.1007/978-81-322-1160-0_3
  • [57] Kapustianyk, V. et al. Exciton spectra on the nanostructured zinc oxide. J. Phys. Studies 12, 2602 (2008).
  • [58] Varshni, Y. P. Temperature dependence of the energy gap in semiconductors. Physica 34, 149–154 (1967). https://doi.org/10.1016/0022-3697(79)90162-8
  • [59] Kulyk, B., Kapustianyk, V., Tsybulskyy, V., Krupka, O. & Sahraoui, B. Optical properties of ZnO/PMMA nanocomposite films. J. Alloys Compd. 502, 24–27 (2010). https://doi.org/10.1016/j.jallcom.2010.04.162
  • [60] Rodnyi, P. A. & Khodyuk, I. V. Optical and Luminescence Properties of Zinc Oxide (Review). Opt. Spektrosk. 111, 814-824 (2011). https://doi.org/10.1134/S0030400X11120216
  • [61] Hur, T. B., Jeen, G. S., Hwang, Y. H. & Kim, K. Photoluminescence of polycrystalline ZnO under different annealing conditions. J. Appl. Phys. 94, 5786-5790 (2003). https://doi.org/10.1063/1.1617357
  • [62] Bundesmann, C., Schmidt-Grund, R. & Schubert, M. Transparent Conductive Zinc Oxide: Basics and Application in Thin Film Solar Cells. (Springer: Berlin, 2008). https://doi.org/10.1007/978-3-540-73612-7
  • [63] Ellmer, K. Transparent conductive zinc oxide and its derivatives. In Handbook of Transparent Conductors. (Springer: New York, NY, USA, 2011). https://doi.org/10.1007/978-1-4419-1638-9_7
  • [64] Rai, R.C., Guminiak, M., Wilser, S., Cai, B. & Nakarmi, M. L. Elevated temperature dependence of energy band gap of ZnO thin films gown by e-beam deposition. J. Appl. Phys. 111, 073511 (2012). https://doi.org/10.1063/1.3699365
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4831b5ca-ceac-472e-a9cc-1522c5d6b95d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.