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Abstract
This paper presents a novel step forward in finding the loads of particular mooring ropes that balance the steady 
environmental excitations for a ship staying at berth. The industrial static equilibrium method for a rough as-
sessment of ship mooring safety is considered to be well-established. The static loads are directly related to the 
rope’s MBLs (minimum breaking loads) while applying a certain safety margin (usually 50%). The problem is 
reduced to a set of linear equations that may be solved analytically. The generality in terms of arbitrary horizon-
tal and vertical angles of mooring ropes is preserved. All derivations are provided to enhance trust in the very 
simple yet absolutely accurate and fast linear solution. The accuracy is studied both analytically, throughout 
all the development stages, and finally by comparison to the exact numerical solution of the original nonlinear 
equilibrium equations for an exemplary mooring pattern. A discussion of selected effects in load distribution 
is also given. Using the approach presented, for instance, we can efficiently test mooring safety when any mo-
oring rope of the set is accidentally broken.

Introduction

The ship navigators and berth/terminal operators 
are often faced with the problem of excessive loads in 
mooring ropes in both common and extreme weather 
conditions. Guidance is needed, for both the design 
of new technical systems and the operation of a cur-
rently existing situation. In both cases, various risk/
failure options must be considered. One method of 
practical importance is the static equilibrium analy-
sis of a moored ship. The geometry of mooring lines 
with no catenary effect (i.e. the straight line) is gen-
erally assumed here for merchant ships.

The ship’s static equilibrium can be examined 
by means of ship manoeuvring simulation, e.g. 
(Artyszuk, 2004), or through purely static methods 
(Chernjawski, 1980; OCIMF, 2013). In both cases, 
we only and directly determine a ship’s linear and 
angular offset from a berth, which results in stretch-
ing mooring ropes so as to balance the environmen-
tal load. The subsequent computation of particular 
rope tensions is straightforward.

In the both the mentioned approaches the use 
of  time-consuming numerical methods is required. 
In the first case, they deal with a set of ordinary dif-
ferential equations in time-domain; in the second 
one, a set of algebraic equations is solved.

Although the adopted formulation of the mooring 
problem is not explicitly called linear in the studies 
of (Chernjawski, 1980), and in those reproduced by 
(Natarajan & Ganapathy, 1995), the matrix equations 
used (which inherently present some linearizations) 
and the simple input data uniquely lead to a fully lin-
ear problem that can be solved analytically. Howev-
er, for reasons that are not explained, a numerically 
iterative (or incremental) technique is undertaken, in 
threference cited works, to solve the problem.

The analytical methods for linear problems are 
very fast and exact, allowing for various efficient 
parametric studies. If possible, they should be always 
encouraged. Moreover, they are readily available for 
everyone, even for an inexperienced user. On  the 
other hand, the consequences and validity range of 
the linearizations made to the mooring problem, 
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which should be thoroughly understood, have not 
been fully appraised so far in literature.

That is why in the present paper a careful, sys-
tematic development (through successive approxi-
mations) of the linear mooring model is challenged, 
starting from a nonlinear model. The evaluation is 
made analytically (while discussing the simplifica-
tions) and numerically, for a specific case study.

Mooring force model for a ship’s arbitrary 
movement

In order to develop a full nonlinear model of the 
mooring rope effect on a ship, we introduce two 2D 
reference systems – Mxy and OXY, see Figures 1 
and 2. Both are placed in the horizontal, top-view 
plane of water. The former is ship-fixed and used 
for defining locations of the ship’s fairleads and for 
expressing the exciting forces acting on it. The latter 
coordinate system is earth-fixed and used for motion 
description, but only in terms of the ship’s position 
and attitude geometric variations. By default, the 
OXY system is the primary one used for performing 
the below vector calculations. The use of the local 
system Mxy (whenever necessary) will be explicit-
ly marked in the formulas. It is assumed that Mxy 
and OXY initially coincide and are aligned with each 
other, i.e. OXY is naturally positioned at the ship’s 
origin while the ship is alongside the berth in calm 
weather. In this case, the ship is slightly touching the 

fenders and has marginal tension in mooring ropes. 
The X-axis corresponds to the direction of the berth 
line. The angular displacement of the ship to star-
board (Δψ) and the horizontal angle of the rope (γH) 
if made fast on starboard side are both given a pos-
itive value.

The mentioned nonlinearity of the model derives 
from the geometric relations involved in the system 
consisting of the ship’s fairlead (F), shore-based 
bollard (B), and mooring rope connecting the two. 
The nonlinearity is especially evident in the case of 
a fairly large movement of the ship away from the 
berth – Figure 2. In mechanical aspects, however, 
the linear law of rope elasticity (strain-stress charac-
teristics) is usually adopted, and also used hereafter.

In Figure 2, an example of the new linear and 
angular positions of the ship is denoted by the prime-
sign ('). Determination of the possible causes of such 
extreme and sudden departure from the original sit-
uation (M  =  O, Mx  ||  OX) is beyond the scope of 
the present work. Although the ship starts to drift 
due to wind, and its track initially follows roughly 
the direction of the wind (with some heading alter-
ation based on wind moment), the mooring rope 
immediately begins stretching and restrains further 
movement of the ship. The improper, hypothetical 
scale of the ship’s movement, depicted in Figure 2, 
is uncommon in mooring practice but is nevertheless 
convenient for defining appropriate relationships 
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within the model and is intended to constitute a firm 
background for reasonable linearization. In particu-
lar, Figure 2 shows variations of the horizontal angle 
(see Figure 1), depicted as γH (actual) and γH0 (ini-
tial), and in the horizontal plane projection of the 3D 
rope, represented by its projection lengths – lxy and 
lxy0. The figure also shows the linear (Δx, Δy) and 
angular displacements of the ship in this situation, to 
facilitate the interpretation of the provided numeri-
cal results.

The evolution of the fairlead coordinates on earth 
can be written using the following vectorial notation 
(see Figure 3):

	 MFMF rrr   
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where rM, rMF, rF stand for the vectors of the ship’s 
origin shift; fairlead location versus ship’s origin 
(with fixed coordinates of the fairlead in Mxy – xF, 
yF); fairlead location in OXY after the applied devia-
tion in ship’s position and heading, respectively.

The relative change of fairlead location, required 
for rope elongation calculations, reads:
	 F0FF rrΔr   
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Hence
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or
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The vector rFB, symbolising the rope’s orthogo-
nal projection (of the fairlead-bollard 3D line) to the 
horizontal plane, is expressed by
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where the actual length, lxy, serves as the basic inter-
mediate unknown in our study of the ship’s hori-
zontal motion. Moreover, the initial horizontal esti-
mate of lxy0 is usually given on input – i.e. based on 
the combined ship-terminal top view. The explicit 
knowledge of shore bollard coordinates is not need-
ed at all. Note: the horizontal angle γH is counted 
against the earth-fixed axis OX.

As shown in Figure 4, this length can easily 
be turned into the total (3D) length l, necessary in 
further evaluations of the rope’s elastic behaviour. 
Here, the key input is the fairlead-bollard vertical 
distance (height), Δh, which is always directly giv-
en. The bollards ashore, as well as the berth itself, 
are located much further below the ship’s fairleads. 
Nevertheless, instead of the square root, it is often 
beneficial to introduce a proportionality coefficient 
between both lengths lxy and l, and the resulting cor-
responding forces. This coefficient is the cosine of 
the vertical angle γV. The vertical angle changes in 
parallel with the total length while the ship under-
goes a horizontal movement. Both l and γV are also 
included in (7).
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Similarly to Figure 2 and the related comments 
reported earlier, Figure 4 also illustrates a larger scale  
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of the ship’s movement than the one seen during typ-
ical mooring.

The initial state of rFB is marked by the use of the 
‘0’ sub-index in (7):
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Finally
	 FFB0FB Δrrr   

 
	 (9)

where the sign ‘–’ at ΔrF arises from the fact that 
we ‘move’ the fairlead (not the bollard), as seen in 
Figure 4.

Introducing the increase in horizontal and total 
length:
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and taking advantage of:
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The relative elongation of the rope (responsible 
for developing the stress response) is thus:
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The expression of the rope load (and the force 
acting on the ship), according to the assumed linear 
elasticity, reads:
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and its most interesting horizontal component (the 
mooring restraint force) takes the form:
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where MBL and e% are the basic rope parameters – 
minimum breaking load (strength) and dimension-
less specific elasticity, respectively. By definition, 
for e% = 0.01÷0.02 (typical for wire), we experience 
1÷2% elongation of rope at MBL.

As can be seen in (17) on the right-hand side, the 
horizontal force is proportional to the product of two 
unknown terms, which can be rewritten as follows:
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from which we obtain a simple function of the vari-
able Δlxy:
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Δlxy is governed by lxy, see (10) and (7), but accord-
ing to (9), one gets:
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	 22
FBFBxy YXl   

 
	 (22)

We do not intend here to settle the final expression 
for (22). The ‘geometrically’ derived non-linear, yet 
full, model of the single rope-excited mooring force 
Fxy, (17, 20–22, 10), explicitly provides the force 
value for a given ship position and heading change, 
as a function of three parameters (displacements) – 
Δx, Δy, Δψ. This force, through the horizontal angle 
and application point (i.e. the fairlead), contributes 
to longitudinal, transverse, and rotational restraints 
of the ship in windy conditions. Although imprac-
tical, the static equilibrium in case of a single rope 
is theoretically possible and solvable. The inverse 
problem consists here in computing the ship’s three 
displacement components based on the provided 
environmental (external) force, which consists of 
two force and one moment components. In the case 
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of our nonlinear model of multiple ropes, this can 
only be accomplished numerically. However, the 
presence of a unique solution may not be guaran-
teed. Finally, the desired mooring load is a direct 
outcome of the resolved displacements.

Approximations towards linearization

The approximations introduced from here on 
mostly consist of applying values of some function-
al sequence limits to the equations in the preceding 
chapter. To simplify notation, we deliberately use ‘=’ 
instead of ‘≈’, unless required for clarity and con-
sistency, especially for expressions within the same 
line.
Step 1

For a general angle α approaching zero, we can 
state that:

	 01cos    while   sin  
 

	 (23)

One can numerically estimate, that at least within 
the range of 1° for the angle, the left-hand side of the 
first expression in (23) leads to values roughly 103 
times lower than the second expression, so it may be 
disregarded. More accurately:
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which can be proved by L'Hopital’s rule and even 
found in some elementary textbooks, e.g. (Bronsz-
tejn & Siemiendiajev, 1996). Expression (24) is an 
infinitesimal of higher order (exactly second) to the 
second expression in (23).

Incorporating (23) to (21, 22), we gain:
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Step 2

Let us now remove in (26) the underlined infini-
tesimal quantities of higher/second order to the linear 
combinations of ship’s displacements (in brackets). 
Hence, after some minor rearrangements, one gets:
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and following (10):
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Step 3

For small linear and angular displacements, rep-
resented by a general variable x, equation (28) con-
verges to:
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which can be numerically and even analytically 
(exactly) proved, or found in textbooks, once again 
using L'Hopital’s rule.

Hence
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and finally
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Step 4
Incorporating (31) into (20), and adopting a sim-

ilar operation as in the previous step, one comes to 
the following expression
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Step 5
Disregarding the underlined term in (32) as high-

er order infinitesimal, we have

   




















































xy
xy

xy
xy

xyxy

xy
xy

xyxy
V

l
l
l

l
l
l

l
ll

l
l
ll

ll
l

2
0

0

2
0

0

0

0

2
0

00

0

1

1

11cos

 

 

	 (33)



Jarosław Artyszuk

14	 Scientific Journals of the Maritime University of Szczecin 46 (118)

Step 6
In (33), the denominator in parenthesis of the last 

expression can be made equal to unity:
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Step 7 (final)
Neglecting the higher order infinitesimal, as in 

step 5, we finalise with:
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Although many steps have been performed so far, 
they are absolutely justifiable and do not introduce 
appreciable inaccuracies. This will be evidenced 
numerically in the last chapter. The listed steps, 
sometimes repeatedly applied, could have been 
integrated to some extent, but the adopted approach 
keeps short-length formulas and ensures clarity.

The horizontal mooring force ultimately reads:
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and, after implementing (31):
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Let’s remember that Δψ in (31) is expressed in 
radians. For small displacements, the vertical angle 
γV converges to its initial value γV0. The same can be 
said with regards to the behaviour of the horizontal 
angle γH, which will be explicitly used in the next 
chapter. In other words, both angles are practically 
preserved. The horizontal angle has not been focused 
on in the above transformations, where attention has 
been paid to the vertical plane of the rope, but an 
analogy between the two exists.

Static equilibrium for full mooring layout

Let’s assume that the static equilibrium of a ship 
is expressed in its coordinate system. This is natural, 
since the environmental loads of current, wind, and 
wave are determined and published in such a system. 
In view of the definitions introduced in this paper, 

where both ship- and berth-fixed reference systems 
initially coincide, this statement is purely formal.

The horizontal restraint force for a single rope, 
now marked with the ‘i’ subscript, is expressed by:

	 iiixyi CByAxF    
 

	 (38)

where Ai, Bi, Ci are ‘rope-specific’ (more precisely 
– mooring layout-specific) constants, see (37) for 
details.

This force can be decomposed into the following 
components:

longitudinal restraint

	 iHxyiHixyixi FFF 0coscos    
 

	 (39)

transverse restraint

	 iHxyiHixyiyi FFF 0sinsin    
 

	 (40)

(yaw) moment restraint
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Embedding (38):

	 fxifxifxixi CByAxF    
 

	 (42a)

	 fyifyifyiyi CByAxF    
 

	 (42b)

	 mzimzimzizi CByAxM    
 

	 (42c)

where Ax, Bx, Cx, x ∈ {‘fx’, ‘fy’, ‘mz’}, are nine new-
ly defined mooring layout-specific constants.

If the total environmental load to be withstood 
by n number of mooring ropes is depicted by its lon-
gitudinal force, FEx, transverse force, FEy, and yaw 
moment, MEz, then the linear static equilibrium equa-
tions take the matrix form:
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where the global constants (for the whole mooring 
layout) in the first matrix on the right-hand side of 
the equation, are summations of particular contribu-
tions from each rope, as exemplified by
	 

n
fxifx AA  etc. 

 

	 (44)

The minus-sign on the right-hand side of (43) 
comes from the fact that we need to have opposite 
mooring forces that balance the environmental forc-
es, i.e. the sum of all forces must equal zero.

The equations in (43) shall be solved against 
the ship’s linear and angular displacements as the 
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unknowns – Δx, Δy, Δψ. The set of linear equations 
is analytically and easily solvable. There are plenty 
of algorithms in literature and ready computer tools 
to do so.

For practical assessment or application in navi-
gation practice, the very small radian value obtained 
for Δψ shall be directly converted to degrees. As 
stated above, the degree value of heading deviation 
is also small.

When the displacements from (43) are substituted 
into (38) we acquire the mooring load in a particular 
rope. Since in many cases we are mostly interested 
in the mooring load related to (divided by) MBL, 
this dimensionless quantity, F'xy, taken as the safe-
ty factor, could be directly gained if we omit MBL 
in computations of equation constants. Therefore, 
we can base the whole algorithm on the right-hand 
expression of the below equation:
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The dimensionless load F'xy is thus linearly 
dependent on the ratio of actual dimensionless elon-
gation Δl'xy = Δl'xy/lxy0 in the horizontal plane to the 
specific elasticity of the rope. However, the envi-
ronmental force components in the left-hand side of 
(43) should also be divided by MBL. This approach 
is thus not practical if different MBLs are present in 
the mooring layout.

One can also notice that the value of rope elastici-
ty e%, higher for fibre ropes and lower for wire ropes, 
does not influence the load distribution. The higher 
the value of elasticity, the higher are the ship’s abso-
lute displacements, but the rope force is preserved. 

Numerical example and method 
assessment

Let us consider the practical mooring layout pre-
sented in Figure 5. It consists of 8 ropes. The ship’s 
fairleads are marked with small black solid dots. The 
shore bollards (hooks) are indicated by big white-
filled circles. All horizontal geometric properties 
(with the ship’s length of approx. 300  m) can be 
easily determined. Together with vertical angle data, 
they are also more accurately summarised in Table 1 
in order to document the following numerical cal-
culations. The MBL of 2400 kN and e% = 0.02 are 
assumed. The former value seems to be large in light 
of the mentioned ship’s size, but it represents the usual 
navigational practice of doubling ropes sent from the 
same fairlead. In this way, having nominally 16 ropes 
(of actual, physical MBL = 1200 kN ≈ 120 t), we can 

essentially restrict our algorithm to 8 different ropes 
(n  =  8). The directly obtained load in kN, and its 
relation to MBL, is relevant to each single rope (total 
of 16).

Table 1. Input data

Rope 
ID.

Rope  
type

xF 

[m]
yF 

[m]
lxy0 

[m]
γH0 

[°]
γV0 

[°]
#1 head line 158.73 0.00 70.82 49.2 12.0
#2 forward breast 147.67 11.04 63.01 83.3 13.5
#3 forward breast 134.07 16.56 64.07 117.0 12.8
#4 forward spring 104.47 23.62 39.82 172.1 20.1
#5 aft spring –120.47 25.00 65.61 3.6 12.5
#6 aft breast –145.12 21.47 72.28 46.1 7.5
#7 aft breast –149.80 19.94 53.87 84.9 10.0
#8 stern line –155.75 5.83 61.86 129.4 8.8

The input environmental force chosen as an 
example, corresponding to a 20 m/s wind blowing 
from behind the beam, is taken as:

FEx = +114 kN (to forward),
FEy = –2357 kN (to port),
MEz = +102 533 kNm (to starboard).

In the case of a fully nonlinear model, numeri-
cal computation has been attempted. Having a set 
of three nonlinear equations with three unknowns, 
this was essentially an iterative process of manual 
(trial and error) tuning. Independent and coupled 
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Figure 5. Exemplary mooring layout
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calibrations of Δx, Δy, and Δψ were utilized to evalu-
ate the equilibrium force and moment with the prop-
er degree of accuracy (±0.5 kN in force, ±0.5 kNm in 
moment) as fast as possible. In particular, the head-
ing alteration (Δψ) is selected in relation with the 
transverse departure (Δy) off the berth as to preserve 
a ‘positive’ elongation both in the forward and aft 
part of the ship. For this purpose, one could define 
and automatically calculate intermediate, local trans-
verse displacements at the fore and aft perpendicu-
lars of the ship. The results of numerical solution of 
the full model are as follows (all digits are signifi-
cant for the required accuracy):

Δx = +0.0317 m (to forward),
Δy = –0.2878 m (to port),
Δψ = +0.029735º (to starboard).

which lead to mooring loads presented in Table 2. 
According to mooring practice and recommenda-
tions of (OCIMF, 2013), safe working loads in moor-
ing ropes should be below approx. 50% of MBL. 
These criteria are also met in our example.

Table 2. Distribution of mooring loads for full model

Rope ID. Fxy [kN] Fxy/MBL [%]
#1 219 9.1
#2 372 15.5
#3 365 15.2
#4 138 5.8
#5 7 0.3
#6 405 16.9
#7 783 32.6
#8 575 24.0

The analytical results of the linearized model, 
derived in the paper, with one more significant digit 
are quite identical:

Δx = +0.03165 m (to forward),
Δy = –0.28857 m (to port),
Δψ = +0.0298278º (to starboard).

If such are introduced to the full model, we get 
(in absolute magnitudes) the sum of longitudinal 
mooring forces lower by 1 kN, transverse mooring 
forces lower by 6 kN, and mooring moments lower 
by 335 kNm, as compared to the numerical nonlinear 
solution. However, the individual load of each rope 
only differs by as much as 1 kN (and 0.1% MBL).

One can also notice that in this quite real example 
the heading variation (less than 0.1º) is almost unno-
ticeable to navigators and terminal operators, maybe 
due to the assumed low environmental moment.

Conclusions

The analytical and numerical investigations per-
formed in the present work have evidenced the great 
potential of a feasible linear analytical solution to the 
problem of mooring load distribution o among par-
ticular ropes for a ship at berth.

A small excursion of a ship from the reference 
position and alignment produces a small elongation, 
and a small variation of both the horizontal and ver-
tical angles of the mooring rope. The rope elongation 
itself, however, may not be neglected as it leads to 
significant forces acting on the mooring ropes, and 
thus to identical reactions on the ship. The change 
of the other two quantities (angle-related ones) can 
safely be disregarded. Hence, we arrive at the very 
efficient (quick, accurate, and compact) method of 
analytical linear solution, which can even be imple-
mented in an electronic spreadsheet.

This essentially 3DOF analysis concentrated on 
the horizontal planar motions (displacements) of 
a ship is typical for current and wind environmen-
tal concerns only. In the case of 6DOF oscillatory 
ship motions, like in heavy weather/wavy conditions 
at the site, the presented approach yields somewhat 
average (steady) loads, which are not the maximum 
ones. Therefore, future research will be directed 
towards the dynamic analysis of the mooring loads 
and the generalization of the algorithm to account 
for the omitted ship displacements, such as those 
pertaining to heave, roll, and pitch motions. Further 
improvements of the algorithm should include the 
consideration of pretension of moorings and fender 
effects, usually applied but neglected in the present 
analysis.
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