Powiadomienia systemowe
- Sesja wygasła!
Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Personalized Environmental Control Systems (PECS) as a Key to Individualized Thermal Comfort in Modern Buildings
Języki publikacji
Abstrakty
Modern buildings impose high demands on user comfort and energy efficiency. However, in practice, ensuring satisfaction for all occupants remains a challenge. Due to significant differences in how individuals perceive environmental conditions, increasing attention is being given to Personal Environmental Control Systems (PECS). These systems enable local adjustment of the microclimate in the user’s immediate surroundings according to their preferences, which helps to increase thermal comfort, improve air quality, and optimize energy consumption. The article discusses the impact of the indoor environment on the health, comfort, and productivity of building occupants. It highlights the limitations of traditional heating, ventilation, and air conditioning systems and presents the advantages of PECS solutions. The article also reviews examples of commercial PECS implementations and the results of pilot studies conducted at the Silesian University of Technology. It emphasizes the need for further research on integrating PECS with intelligent Building Management Systems (BMS) and optimizing control algorithms to fully harness their potential in terms of public health, user comfort, and building energy efficiency.
Współczesne budynki stawiają wysokie wymagania w zakresie komfortu użytkowników i efektywności energetycznej, jednak w praktyce zapewnienie satysfakcji wszystkim osobom przebywającym w pomieszczeniach nadal pozostaje wyzwaniem. Ze względu na znaczne różnice w indywidualnym odczuwaniu warunków środowiskowych przez poszczególne osoby, coraz większą uwagę poświęca się Spersonalizowanym Systemom Kontroli Środowiska (PECS, ang. Personal Environmental Control Systems). Systemy te umożliwiają lokalną regulację mikroklimatu w bezpośrednim otoczeniu użytkownika zgodnie z jego preferencjami, co pozwala zwiększyć komfort cieplny, poprawić jakość powietrza oraz zoptymalizować zużycie energii. W artykule omówiono wpływ środowiska wewnętrznego na zdrowie, komfort i produktywność użytkowników budynków. Zwrócono uwagę na ograniczenia tradycyjnych systemów ogrzewania, wentylacji i klimatyzacji i przedstawiono zalety rozwiązań PECS. Przedstawiono także przykłady komercyjnych wdrożeń PECS oraz wyniki pilotażowych badań prowadzonych na Politechnice Śląskiej. W artykule podkreślono potrzebę dalszych badań nad integracją PECS z inteligentnymi systemami zarządzania budynkiem (BMS) oraz optymalizacją algorytmów sterowania, aby w pełni wykorzystać ich potencjał w kontekście zdrowia publicznego, komfortu użytkowników i efektywności energetycznej budynków.
Wydawca
Czasopismo
Rocznik
Tom
Strony
17--23
Opis fizyczny
Bibliogr. 45 poz., rys., zdj.
Twórcy
autor
- Katedra Ogrzewnictwa, Wentylacji i Techniki Odpylania, Wydział Inżynierii Środowiska i Energetyki, Politechnika Śląska
autor
- Katedra Ogrzewnictwa, Wentylacji i Techniki Odpylania, Wydział Inżynierii Środowiska i Energetyki, Politechnika Śląska
autor
- Katedra Ogrzewnictwa, Wentylacji i Techniki Odpylania, Wydział Inżynierii Środowiska i Energetyki, Politechnika Śląska
Bibliografia
- [1] Ahrend GmbH & Co. KG. 2025. „Ahrend | Balance Comfort | Personal Control of Your Workplace”. 2025. https://www.ahrend.com:80/en/collection/desks/balance-comfort/.
- [2] Air Innovations, Inc. 2025. „Desk Console Management (MyZone )”. Air Innovations. 2025. https://airinnovations.com/environmentalcontrol/desktop-console-management-myzone/.
- [3] Allen Joseph G., Piers MacNaughton, Usha Satish, Suresh Santanam, Jose Vallarino, i John D. Spengler. 2016. „Associations of cognitive function scores with carbon dioxide, ventilation, and volatile organic compound exposures in office workers: a controlled exposure study of green and conventional office environments”. Environmental Health Perspectives 124 (6): 805-12. https://doi.org/10.1289/ehp.1510037.
- [4] Altomonte Sergio, i Stefano Schiavon. 2013. „Occupant Satisfaction in LEED and Non-LEED Certified Buildings”. Building and Environment 68 (październik): 66-76. https://doi.org/10.1016/j.buildenv. 2013.06.008.
- [5] Altomonte Sergio, Stefano Schiavon, Michael G. Kent, i Gail Brager. 2019. „Indoor environmental quality and occupant satisfaction in green-certified buildings”. Building Research & Information 47 (3): 255-74. https://doi.org/10.1080/09613218.2018.1383715.
- [6] Al Assaad Douaa, Kamel Ghali, Nesreen Ghaddar, i Carine Habchi. 2017. „Mixing Ventilation Coupled with Personalized Sinusoidal Ventilation: Optimal Frequency and Flow Rate for Acceptable Air Quality”. Energy and Buildings 154 (listopad):569-80. https://doi.org/10.1016/j.enbuild.2017.08.090.
- [7] Al Assaad Douaa, i Ilaria Pigliautile. 2024. „Personalized Environmental Control Systems (PECS): Overview of Evaluation Methods”. AIVS Publications, październik. https://www.aivc.org/resource/personalizedenvironmental-control-systems-pecs-overview-evaluation-methods.
- [8] Cermak Radim, i Arsen Melikov. 2007. „Protection of occupants from exhaled infectious agents and floor material emissions in rooms with personalized and underfloor ventilation”. HVAC&R Research 13 (1): 23-38. https://doi.org/10.1080/10789669.2007.10390942.
- [9] Cermak Radim, Arsen Melikov, Lubos Forejt, i Oldrich Kovar. 2006. „Performance of personalized ventilation in conjunction with mixing and displacement ventilation”. HVAC&R Research 12 (2): 295-311. https://doi.org/10.1080/10789669.2006.10391180.
- [10] Daikin Industries Ltd. 2024. „IEQ Sensor & Demand-Controlled Ventilation”. 10 lipiec 2024. https://blog.daikinapplied.eu/news-center/ieq-sensor-and-demand-controlled-ventilation.
- [11] Daikin Industries Ltd. 2025. „Daikin Global | Press Releases | Daikin Demonstrates “Pollen-Less” and “Personalized Functional” Spaces”. 2025. https://www.daikin.com/press/2025/20250107.
- [12] de Dear Richard, i Marc Fountain. 1994. „Field Experiments on Occupant Comfort and Office Thermal Environments in a Hot-Humid Climate”. ASHRAE Transactions 100 (2). https://escholarship.org/uc/ item/97n1d8hd.
- [13] ETHERMA Elektrowärme GmbH. 2021. „Infrared Heating for Tables – Infrared Heating Panels – Heating – Etherma”. 2021. https://www.etherma.com/en/heating/infrared-heating-panels/infrared-heating-fortables.
- [14] Fanger Povl Ole, Zbigniew Popiołek, i Paweł Wargocki. 2003. Środowisko wewnętrzne. Politechnika Śląska. Gliwice: Politechnika Śląska.
- [15] Fisk William J. 2000. „Health and Productivity Gains from Better Indoor Environments and Their Relationship with Building Energy Efficiency”. Annual Review of Environment and Resources 25 (Volume 25, 2000): 537-66. https://doi.org/10.1146/annurev.energy.25.1.537.
- [16] Godithi Sam Babu, Enna Sachdeva, Vishal Garg, Richard Brown, Christian Kohler, i Rajan Rawal. 2019. „A review of advances for thermal and visual comfort controls in personal environmental control (PEC) systems”. Intelligent Buildings International 11 (2): 75-104. https://doi.org/10.1080/17508975.2018.1543179.
- [17] Hoyt Tyler, Edward Arens, i Hui Zhang. 2015. „Extending air temperature setpoints: Simulated energy savings and design considerations for new and retrofit buildings”. Building and Environment, Interactions between human and building environment, 88 (czerwiec):89-96. https://doi.org/10.1016/j.buildenv.2014.09.010
- [18] Huang Li, Qin Ouyang, i Yingxin Zhu. 2012. „Perceptible Airflow Fluctuation Frequency and Human Thermal Response”. Building and Environment 54 (sierpień):14-19. https://doi.org/10.1016/j.buildenv.2012.02.004.
- [19] IEA EBC. 2025. „IEA EBC || Annex 87 || Performance of Personalised Environmental Control Systems || IEA EBC || Annex 87”. 2025. https://annex87.iea-ebc.org/.
- [20] Kent Michael G., Thomas Parkinson, i Stefano Schiavon. 2024. „Indoor Environmental Quality in WELL-Certified and LEED-Certified Buildings”. Scientific Reports 14 (1): 15120. https://doi.org/10.1038/ s41598-024-65768-w.
- [21] Kim Joyce, Yuxun Zhou, Stefano Schiavon, Paul Raftery, i Gail Brager. 2018. „Personal comfort models: Predicting individuals’ thermal preference using occupant heating and cooling behavior and machine learning”. Building and Environment 129 (luty): 96-106. https://doi.org/10.1016/j.buildenv.2017.12.011.
- [22] Li Da, Carol C. Menassa, i Vineet R. Kamat. 2017. „Personalized human comfort in indoor building environments under diverse conditioning modes”. Building and Environment 126 (grudzień): 304-17. https://doi.org/10.1016/j.buildenv.2017.10.004.
- [23] Lin Tzu-Ping, Richard de Dear, Andreas Matzarakis, i Ruey-Lung Hwang. 2009. „Prediction of Thermal Acceptability in Hot-Humid Outdoor Environments in Taiwan”. W. Yokohama, Japan.
- [24] Lipczynska Aleksandra, Jan Kaczmarczyk, i Arsen Melikov. 2015. „Thermal environment and air quality in office with personalized ventilation combined with chilled ceiling”. Building and Environment 92:603-14. https://doi.org/10.1016/j.buildenv.2015.05.035.
- [25] Lipczynska Aleksandra, Jan Kaczmarczyk, i Arsen Melikov. 2021. „The Energy-Saving Potential of Chilled Ceilings Combined with Personalized Ventilation”. Energies 14 (4): 1133. https://doi.org/10.3390/ en14041133.
- [26] Lipczynska Aleksandra, Stefano Schiavon, i Lindsay T. Graham. 2018. „Thermal comfort and self-reported productivity in an office with ceiling fans in the tropics”. Building and Environment 135 (maj):202-12. https://doi.org/10.1016/j.buildenv.2018.03.013.
- [27] Lipczyńska Aleksandra. 2015. „Impact of Combined System of Personalized Ventilation and Chilled Ceiling on Indoor Environment and Energy Consumption”. Rozprawa doktorska. Politechnika Śląska, Wydział Inżynierii Środowiska i Energetyki. https://repolis.bg.polsl.pl/dlibra/publication/70528.
- [28] Makhoul Alain, Kamel Ghali, i Nesreen Ghaddar. 2015. „Low-Mixing Coaxial Nozzle for Effective Personalized Ventilation”. Indoor and Built Environment 24 (2): 225-43. https://doi.org/10.1177/1420326X13508967.
- [29] Marzec Antonina, Aleksandra Surma, Dominika Dudek, Mateusz Przychodzień, Kacper Mniszko, Mikołaj Hrapeć, Aleksandra Lipczyńska, Jan Kaczmarczyk, i Andrzej Kozyra. 2025. „Spersonalizowane Systemy Kontroli Środowiska (PECS) - Ocena skuteczności systemu PECS w zapewnianiu optymalnych warunków środowiskowych na stanowisku pracy”. W Współczesne problemy ochrony środowiska i energetyki 2024, zredagowane przez Ewa Brągoszewska i Max Lewandowski. Politechnika Śląska.
- [30] Megahed Naglaa A., i Ehab M. Ghoneim. 2021. „Indoor Air Quality: Rethinking rules of building design strategies in post-pandemic architecture”. Environmental Research 193 (luty):110471. https://doi. org/10.1016/j.envres.2020.110471.
- [31] Melikov Arsen. 2004. „Personalized Ventilation”. Indoor Air 14 (s7): 157-67. https://doi.org/10.1111/j.1600-0668.2004.00284.x.
- [32] Melikov Arsen, Radim Cermak, i Milan Majer. 2002. „Personalized ventilation: evaluation of different air terminal devices”. Energy and Buildings 34 (8): 829-36. https://doi.org/10.1016/S0378-7788(02)00102-0.
- [33] Nateghi Seyedkeivan, Shahrzad Marashian, Jan Kaczmarczyk, i Sasan Sadrizadeh. 2025. „Resource-efficient design of integrated personal exhaust ventilation and physical barriers for airborne transmission mitigation: A numerical and experimental evaluation”. Building and Environment 268 (styczeń):112336. https://doi.org/10.1016/j.buildenv.2024.112336.
- [34] Panasonic. 2021. „Panasonic Now Offering Complete Smart Home Ventilation Solutions with Swidget Controls”. 2021. https://na.panasonic.com/news/panasonic-now-offering-complete-smart-home-ventilationsolutions-with-swidget-controls.
- [35] Perino Marco, Matteo Bilardo, i Enrico Fabrizio. 2024. „A framework for assessing the energy performance of Personalized Environmental Control Systems (PECS) for heating, cooling and ventilation”. Building and Environment 265 (listopad):111925. https://doi.org/10.1016/j.buildenv.2024.111925.
- [36] Schiavon Stefano, Bin Yang, Yoni Donner, Victor W.-C. Chang, i William W Nazaroff. 2017. „Thermal Comfort, Perceived Air Quality and Cognitive Performance When Personally Controlled Air Movement Is Used by Tropically Acclimatized Persons”. Indoor Air 27 (3): 690–702. https://doi.org/10.1111/ina.12352.
- [37] Schmidt Kersten, i Dean J. Patterson. 2001. „Performance results for a high efficiency tropical ceiling fan and comparisons with conventional fans: Demand side management via small appliance efficiency”. Renewable Energy 22 (1): 169-76. https://doi.org/10.1016/S0960-1481(00)00056-2.
- [38] Su Wei, Zhengtao Ai, i Bin Yang. 2025. „Quantifying the interaction between the ward background environment and the intensively controlled patients’ micro-environment”. Building and Environment 270 (luty):112532. https://doi.org/10.1016/j.buildenv.2025.112532.
- [39] Vranay Frantisek, Ladislav Pirsel, Richard Kacik, i Zuzana Vranayova. 2020. „Adaptation of HVAC Systems to Reduce the Spread of COVID-19 in Buildings”. Sustainability 12 (23): 9992. https://doi.org/10.3390/su12239992.
- [40] Xu Zhanbo, Shuo Liu, Guoqiang Hu, i Costas J. Spanos. 2017. „Optimal Coordination of Air Conditioning System and Personal Fans for Building Energy Efficiency Improvement”. Energy and Buildings 141 (kwiecień): 308-20. https://doi.org/10.1016/j.enbuild.2017.02.051.
- [41] Yang Junjing, Chandra Sekhar, K. W. D. Cheong, i Benny Raphael. 2015. „Performance Evaluation of a Novel Personalized Ventilation - Personalized Exhaust System for Airborne Infection Control”. Indoor Air 25 (2): 176-87. https://doi.org/10.1111/ina.12127.
- [42] Zhai Yingni, Yi Wang, Yanqiu Huang, i Xiaojing Meng. 2018. „A multi-objective optimization methodology for window design considering energy consumption, thermal environment and visual performance”. Renewable Energy 134 (wrzesień). https://doi.org/10.1016/j.renene.2018.09.024.
- [43] Zhai Yongchao, Edward Arens, Kit Elsworth, i Hui Zhang. 2017. „Selecting Air Speeds for Cooling at Sedentary and Non-Sedentary Office Activity Levels”. Building and Environment 122 (wrzesień): 247-57. https://doi.org/10.1016/j.buildenv.2017.06.027.
- [44] Zhai Yongchao, Hui Zhang, Yufeng Zhang, Wilmer Pasut, Edward Arens, i Qinglin Meng. 2013. „Comfort under Personally Controlled Air Movement in Warm and Humid Environments”. Building and Environment 65 (lipiec):109-17. https://doi.org/10.1016/j.buildenv. 2013.03.022.
- [45] Zhang Nan, Chao Liu, Caixia Hou, Wenhao Wang, Qianhui Yuan, i Weijun Gao. 2024. „The impact of indoor carbon dioxide exposure on human brain activity: A systematic review and meta-analysis based on studies utilizing electroencephalogram signals”. Building and Environment 259 (lipiec):111687. https://doi.org/10.1016/j.buildenv.2024. 111687.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-48295f42-b2ea-4420-9421-6cedade78bf0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.