PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A novel dynamical model for GVT nonlinear supporting system with stable-quasi-zero-stiffness

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, a dynamical model of a spring-mass system with a single degree of freedom is proposed, which can be designed as a nonlinear supporting system for GVT of large scale aircraft and vibration isolation owing to stable-quasi-zero-stiffness (SQZS). The SQZS structure is constructed by a positive stiffness component and a pair of inclined linear springs providing negative stiffness, which is typical for an irrational restoring force due to geometrical configuration. The unperturbed analysis demonstrates complex equilibrium bifurcations and stabilities for this peculiar system, based upon which parameter optimizations are performed for SQZS and the maximum interval of low frequency. Furthermore, the dynamics analysis of the perturbed system near the optimized parameters reveals complicated behaviour of KAM structures, period doubling, chaos crisis, coexistence of multiple solutions, intermittency chaos, chaos saddle, etc. All those presented herein provide a better understanding for the complicated dynamics of SQZS nonlinear system.
Rocznik
Strony
199--213
Opis fizyczny
Bibliogr. 36 poz., rys.
Twórcy
autor
  • Centre for Nonlinear Dynamics Research, School of Astronautics, Harbin Institute of Technology, Harbin, China
autor
  • Centre for Nonlinear Dynamics Research, School of Astronautics, Harbin Institute of Technology, Harbin, China
Bibliografia
  • 1. Alabuzhev P., Gritchin A., Kim L., 1989, Vibration Protecting and Measuring Systems with Quasi-Zero Stiffness, Hemisphere Publishing Co., Taylor & Francis Group, New York
  • 2. Arafat R.M.D., Park S.T., Sajal C.B., 2010, Design of a vehicle suspension system with negative stiffness system. IST Transaction of Mechanical System Theoretic and Application, 1, 2, 1-7
  • 3. Blair D.G.,Winterflood J., Slagmolen B., 2002, High performance vibration isolation Rusing springs in Euler column buckling mode, Physics Letters A, 300, 122-130
  • 4. Breban R, Nusse H.E., Ott E., 2003, Lack of predictability in dynamical systems with drift: scaling of indeterminate saddle-node bifurcations, Physical Letter A, 319, 79-84
  • 5. Cao Q.J., Xiong Y.P., Wiercigroch M., 2011, Resonances of the SD oscillator due to the discontinuous phase, Journal of Applied Analysis and Computation, 1, 2, 183-191
  • 6. Cao Q.J., Wang D., Chen Y.S., Wiercigroch M., 2012, Irrational elliptic functions and the analytical solutions of SD oscillator, Journal of Theoretical and Applied Mechanics, 50, 3, 701-715
  • 7. Cao Q.J., Wiercigroch M., Pavlovskaia E.E., 2006, An archetypal oscillator for smooth and discontinuous dynamics, Physical Review E, 74, 046218
  • 8. Cao Q.J., Wiercigroch M., Pavlovskaia E.E., 2008a, Piecewise linear approach to an archetyp al oscillator for smooth and discontinuous dynamics, Philosophical Transactions R. Soc. London. Series A. Mathematical, Physical and Engineering, 366, 635-653
  • 9. Cao Q.J., Wiercigroch M., Pavlovskaia E.E., 2008b, The limit case response of the archetyp al oscillator for smooth and discontinuous dynamics, International Journal of Non-Linear Mechanics, 43, 462-473
  • 10. Carrella A., Brennan M.J., Waters T.P., 2007, Static analysis of a passive vibration izolator with quasi-zero-stiffness characteristic, Journal of Sound and Vibration, 301, 3/5, 678-689
  • 11. Denoyer K., Johnson C., 2001, Recent achievements in vibration isolation systems for space launch and
  • 12. Diminnie D.C., Haberman R., 2000, Slow passage through a saddle-center bifurcation, Journal of Nonlinear Science, 10, 197-221
  • 13. Freitas M.S.T., Viana R.L., 2004, Multistability, basin boundary structure, and chaotic behaviour in a suspension bridge model, International Journal of Bifurcation and Chaos, 14, 3, 927-950
  • 14. Grebogi C., Ott E., Yorke J.A., 1983, Crises, sudden changes in chaotic attractors, and transient chaos, Physica D, 173, 181-200
  • 15. Green G.S., 1945, The effect of flexible ground supports on the pitching vibrations of an aircraft, R&M 2291, November
  • 16. Guckenheimer J., Holmes P., 1999, Nonlinear Oscillation. Dynamical System and Bifurcation of Vector Fields, Springer-Verlag, New York
  • 17. Hong L., Xu J.X., 1999, A chaotic crisis and chaotic transients studied by the generalized cell mapping digraph method, Physical Letter A, 262, 361-375
  • 18. Hong L., Xu J.X., 2004, Crisis and chaotic saddle and attractor in forced Duffing oscillator, Communication of Nonlinear Science Numerical Simulation, 9, 313-329
  • 19. Hsu C.S., 1992, Global analysis by cell mapping, International Journal of Bifurcation and Chaos, 2, 4, 727-771
  • 20. Ibrahim R.A., 2008, Recent advances in nonlinear passive vibration isolators, Journal of Sound and Vibration, 314, 371-452
  • 21. Kovacic I., Brennan M.J., Waters T.P., 2008, A study of a non-linear vibration isolator with a quasi-zero stiffness characteristic, Journal of Sound and Vibration, 315, 700-711
  • 22. Lai S.K., Xiang Y., 2010, Application of a generalized Senator-Bapat perturbation technique to nonlinear dynamical systems with an irrational restoring force, Computers and Mathematics with Applications, 60, 7, 2078-2086
  • 23. Lichtenberg A.J., Lieberman M.A., 1992, Regular and Chaotic Dynamics Springer-Verlag, New York
  • 24. Lorrain P., 1974, Low natural frequency vibration isolator or seismograph,Review of Science Instrument, 45, 198-202
  • 25. Molyneux W.G., 1957, Supports for vibration isolation, A.R.C., Current Paper, 322
  • 26. Nusse H.E., Ott E., Yorke J.A., 1995, Saddle-node bifurcations on fractal basin boundaries, Physical Review Letter, 75, 2482-2485
  • 27. Nusse H.E., Yorke J.A., 1994, Dynamics: Numerical Explorations, Applied Mathematical Sciences, Vol 101, Springer-Verlag, New York
  • 28. Platus D.L., 1992, Negative-stiffness-mechanismvibration isolation systems, Proceedings of SPIE. Vibration Control in Microelectronics, Optics, and Metrology, San Jose, CA, USA, 1619, 44-54
  • 29. Souza S.L.T., Caldas I.L., Viana R.L., 2004, Sudden changes in chaotic attractors and transient basins in a model for rattling in gearboxes, Chaos, Solition and Fractals, 21, 763-772
  • 30. Souza S.L.T., Caldas I.L., Viana R.L., Balthazar J.M., 2008, Control and chaos for vibroimpact and non-ideal, Jounal of Theoretical and Applied Mechanics, 46, 3, 641-664
  • 31. Thompson J.M.T., Stewart H.B., 2002, Nonlinear Dynamics and Chaos, 2nd ed., Wiley, London
  • 32. Tian R.L., Cao Q.J., Yang S.P., 2010, The codimention-two bifurcation for the recent proposed SD oscillator, Nonlinear Dynamics, 59, 19-27
  • 33. Winterflood J., 2001, High performance vibration isolation for gravitational wave detection, Ph.D. Thesis, University of Western Australia, Western Australia
  • 34. Wolf A., Swift J.B., Swinney H.L., 1985, Determining Lyapunov exponents from a time series, Physica D, 16, 285
  • 35. Xing J.T., Xiong Y.P., Price W.G., 2005, Passive-active vibration isolation systems to produce zero or infinite dynamic modulus: theoretical and conceptual design strategies, Journal of Sound and Vibration, 286, 615-636
  • 36. Zhang J.Z., Li D., Chen M.J., 2004, An ultra-low frequency parallel nonlinear isolator for precision instruments, Key Engineering Material, 57, 258, 231-236 on-orbit applications, 52nd International Astronautics Congress, Toulouse, France
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4827f0c7-6216-4530-958c-826c110c57b5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.