Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this paper, we consider the Nemytskii operator (H f) (t) = h(t, f(t)), generated by a given function h. It is shown that if H is globally Lipschitzian and maps the space of functions of bounded (p, 2, α)-variation (with respect to a weight function α) into the space of functions of bounded (q, 2, α)-variation (with respect to α) 1 < q < p, then H is of the form (H f) (t) = A(t)f(t) + B(t). On the other hand, if 1 < p < q then H is constant. It generalize several earlier results of this type due to Matkowski–Merentes and Merentes. Also, we will prove that if a uniformly continuous Nemytskii operator maps a space of bounded variation with weight function in the sense of Merentes into another space of the same type, its generator function is an affine function.
Wydawca
Czasopismo
Rocznik
Tom
Strony
933--948
Opis fizyczny
Bibliogr. 20 poz.
Twórcy
autor
- Universidad de Los Andesm Departamento de Física Y Matemática, Trujillo-Venezuela
Bibliografia
- [1] R. Castillo, An application of the generalized Maligranda–Orlicz’s lemma, J.I.P.A.M. 9(3) (2008), 1–6.
- [2] M. C. Chakrabarty, Some results on ω-derivatives and BV-ω functions, J. Austral. Math. Soc. 9 (1967), 345–360.
- [3] M. C. Chakrabarty, Some results on AC-ω functions, Fund. Math. 64 (1969), 219–230.
- [4] V. V. Chistyakov, Lipschitzian superposition operators between spaces of functions of bounded generalized variation with weight, J. Appl. Anal. 6(2) (2000), 173–186.
- [5] R. L. Jeffery, Generalized integrals with respect to bounded variation, Canad. J. Math. 10 (1958), 617–628.
- [6] T. Kostrzewski, Globally Lipschitzian operators of substitution in Banach space BCra; bs, Sci. Bull. of Łódz Tech. Univer. 602 (1993), 17–25.
- [7] T. Kostrzewski, Existence uniqueness of BC[a, b] solutions of nonlinear functional equation, Demonstratio Math. 26 (1993), 61–74.
- [8] M. Kuczma, An Introduction to the Theory of Functional Equations and Inequalities, Polish Scientific Editors and Silesian University, Warszawa-Kraków-Katowice, 1985.
- [9] J. Matkowski, Functional equation and Nemytskij operators, Funkcial. Ekvac. 25 (1982), 127–132.
- [10] J. Matkowski, J. Mis, On a characterization of Lipschitzian operators of substitution in the space BV[a, b], Math. Nachr. 117 (1984), 155–159.
- [11] J. Matkowski, N. Merentes, Characterization of globally Lipschitzian composition in the Banach space BV2p [a, b], Arch. Math. 28 (1992), 181–186.
- [12] N. Merentes, K. Nikodem, On Nemytskij operator and set-valued functions of bounded p-variation, Rad. Math. 8 (1992), 139–145.
- [13] N. Merentes, S. Rivas, On Nemytskij operator in the space of set-valued functions of bounded p-variation in the sense of Riesz, Publ. Math. Debrecen 47(1–2) (1995), 15–27.
- [14] N. Merentes, On functions of bounded (p, 2)-variation, Collect. Math. 42(2) (1992), 117–123.
- [15] De la Vallée Poussin, Sur la convergence des formules d’interpolation entre ordenées equiditantes, Bull. Acad. Sci. Belg. (1908), 314–410.
- [16] F. Riesz, B. Sz. Nagy, Functional Analysis, Ungar, New York, 1955.
- [17] F. Riesz, Untersuchugen über systeme integrierbarer funktionen, Math. Ann. 69 (1910), 449–497.
- [18] A. M. Russell, Functions of bounded second variation and Stieltjes-type integrals, J. London Math. Soc. 2(2) (1970), 193–203.
- [19] A. Smajdor, W. Smajdor, Jensen equation and Nemytskij operator for set-valued functions, Rad. Math. 5 (1989), 311–319.
- [20] G. Zawadzka, On Lipschitzian operators of substitution in the space of set-valued functions of bounded variation, Rad. Math. 6 (1990), 179–193.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-481d0f71-31ec-4e08-b78e-6431f70f033e