PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

On the Nemytskii operator in the space of functions of bounded (p, 2, α)-variation with respect to the weight function

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, we consider the Nemytskii operator (H f) (t) = h(t, f(t)), generated by a given function h. It is shown that if H is globally Lipschitzian and maps the space of functions of bounded (p, 2, α)-variation (with respect to a weight function α) into the space of functions of bounded (q, 2, α)-variation (with respect to α) 1 < q < p, then H is of the form (H f) (t) = A(t)f(t) + B(t). On the other hand, if 1 < p < q then H is constant. It generalize several earlier results of this type due to Matkowski–Merentes and Merentes. Also, we will prove that if a uniformly continuous Nemytskii operator maps a space of bounded variation with weight function in the sense of Merentes into another space of the same type, its generator function is an affine function.
Wydawca
Rocznik
Strony
933--948
Opis fizyczny
Bibliogr. 20 poz.
Twórcy
autor
  • Universidad de Los Andesm Departamento de Física Y Matemática, Trujillo-Venezuela
Bibliografia
  • [1] R. Castillo, An application of the generalized Maligranda–Orlicz’s lemma, J.I.P.A.M. 9(3) (2008), 1–6.
  • [2] M. C. Chakrabarty, Some results on ω-derivatives and BV-ω functions, J. Austral. Math. Soc. 9 (1967), 345–360.
  • [3] M. C. Chakrabarty, Some results on AC-ω functions, Fund. Math. 64 (1969), 219–230.
  • [4] V. V. Chistyakov, Lipschitzian superposition operators between spaces of functions of bounded generalized variation with weight, J. Appl. Anal. 6(2) (2000), 173–186.
  • [5] R. L. Jeffery, Generalized integrals with respect to bounded variation, Canad. J. Math. 10 (1958), 617–628.
  • [6] T. Kostrzewski, Globally Lipschitzian operators of substitution in Banach space BCra; bs, Sci. Bull. of Łódz Tech. Univer. 602 (1993), 17–25.
  • [7] T. Kostrzewski, Existence uniqueness of BC[a, b] solutions of nonlinear functional equation, Demonstratio Math. 26 (1993), 61–74.
  • [8] M. Kuczma, An Introduction to the Theory of Functional Equations and Inequalities, Polish Scientific Editors and Silesian University, Warszawa-Kraków-Katowice, 1985.
  • [9] J. Matkowski, Functional equation and Nemytskij operators, Funkcial. Ekvac. 25 (1982), 127–132.
  • [10] J. Matkowski, J. Mis, On a characterization of Lipschitzian operators of substitution in the space BV[a, b], Math. Nachr. 117 (1984), 155–159.
  • [11] J. Matkowski, N. Merentes, Characterization of globally Lipschitzian composition in the Banach space BV2p [a, b], Arch. Math. 28 (1992), 181–186.
  • [12] N. Merentes, K. Nikodem, On Nemytskij operator and set-valued functions of bounded p-variation, Rad. Math. 8 (1992), 139–145.
  • [13] N. Merentes, S. Rivas, On Nemytskij operator in the space of set-valued functions of bounded p-variation in the sense of Riesz, Publ. Math. Debrecen 47(1–2) (1995), 15–27.
  • [14] N. Merentes, On functions of bounded (p, 2)-variation, Collect. Math. 42(2) (1992), 117–123.
  • [15] De la Vallée Poussin, Sur la convergence des formules d’interpolation entre ordenées equiditantes, Bull. Acad. Sci. Belg. (1908), 314–410.
  • [16] F. Riesz, B. Sz. Nagy, Functional Analysis, Ungar, New York, 1955.
  • [17] F. Riesz, Untersuchugen über systeme integrierbarer funktionen, Math. Ann. 69 (1910), 449–497.
  • [18] A. M. Russell, Functions of bounded second variation and Stieltjes-type integrals, J. London Math. Soc. 2(2) (1970), 193–203.
  • [19] A. Smajdor, W. Smajdor, Jensen equation and Nemytskij operator for set-valued functions, Rad. Math. 5 (1989), 311–319.
  • [20] G. Zawadzka, On Lipschitzian operators of substitution in the space of set-valued functions of bounded variation, Rad. Math. 6 (1990), 179–193.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-481d0f71-31ec-4e08-b78e-6431f70f033e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.