PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

FEM Analysis of Residual Stresses in Welded Aluminum and Polyamide 6

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Thermoplastic composites enable weldable, recyclable aircraft structures, but thermal mismatch between metals and polymers can introduce detrimental residual stresses. This study develops a finite element method (FEM) framework to predict residual stress fields in resistance-welded joints between aluminum 7075 and carbon-fiber-reinforced polyamide 6 (PA6). Transient thermal analyses with multilinear, temperature-dependent properties were coupled to mechanical analyses; contact conditions transitioned from frictional to bonded at PA6 melting. Three thermal cycles (20°C→220°C→20°C, 20°C→240°C→20°C, 20°C→260°C→20°C) were examined to assess peak-temperature effects. The simulations show stress contours that decay with distance from the bond and reveal pronounced peaks in both normal and shear components at weld edges, consistent with shear-lag theory. Within the bonded interior, average stresses are relatively low, whereas edge concentrations identify likely sites for debonding or delamination initiation. The magnitude of residual stresses increases with thermal gradient, underscoring the need for parameter control during welding. The FEM outputs will be validated against uniaxial tension and three-point bending tests on welded specimens, with future work quantifying fatigue-life reduction under combined thermal and mechanical cycling. The results highlight mitigation priorities for bonded repairs and hybrid aerospace structures, including process-curve tuning (current/pressure/cooling) and edge-region design measures.
Rocznik
Tom
Strony
57--74
Opis fizyczny
Bibliogr. 26 poz., fot., rys., tab., wykr., wzory
Twórcy
  • Military University of Technology, 2 gen. S. Kaliskiego St., 00-908 Warsaw, Poland
  • Łukasiewicz Research Network - Institute of Aviation, 110/114 Krakowska Ave., 02-256 Warsaw, Poland
  • Łukasiewicz Research Network - Institute of Aviation, 110/114 Krakowska Ave., 02-256 Warsaw, Poland
  • Łukasiewicz Research Network - Institute of Aviation, 110/114 Krakowska Ave., 02-256 Warsaw, Poland
  • Łukasiewicz Research Network - Institute of Aviation, 110/114 Krakowska Ave., 02-256 Warsaw, Poland
  • Military University of Technology, 2 gen. S. Kaliskiego St., 00-908 Warsaw, Poland
  • Łukasiewicz Research Network - Institute of Aviation, 110/114 Krakowska Ave., 02-256 Warsaw, Poland
Bibliografia
  • Ageorges, C., Ye, L., & Hou, M. (2001). Advances in fusion bonding techniques for joining thermoplastic matrix composites: A review. Composites Part A: Applied Science and Manufacturing, 32(6), 839-857.
  • Ahmad, A. S., Wu, Y., Gong, H., & Nie, L. (2019). Finite element prediction of residual stress and deformation induced by double-pass TIG welding of Al 2219 plate. Materials, 12(14), 2251.
  • Alexander, K., Daniel, W., & Marion, M. (2014). Influence of a short-term heat treatment by conduction and induction on the mechanical properties of AA6014 alloys. Physics Procedia, 56, 1410-1418.
  • Campilho, R. D. S. G. (Ed.). (2017). Strength prediction of adhesively-bonded joints. CRC Press.
  • Curiel, D., Veiga, F., Suarez, A., & Villanueva, P. (2023). Advances in robotic welding for metallic materials: Application of inspection, modeling, monitoring and automation techniques. Metals, 13(4), 711.
  • Dinu, R., Lafont, U., Damiano, O., & Mija, A. (2022). Development of sustainable high performance epoxy thermosets for aerospace and space applications. Polymers, 14(24), 5473.
  • Farina, I., Singh, N., Colangelo, F., Luciano, R., Bonazzi, G., & Fraternali, F. (2019). High-performance nylon-6 sustainable filaments for additive manufacturing. Materials, 12(23), 3955.
  • Geng, Z., Yu, S., Wang, S., Tian, Z., Gao, Z., Wang, K., & Li, Y. (2024). Advances in resistance welding of fiber-reinforced thermoplastics. Materials, 17(19), 4693.
  • Guillén, J. F., & Cantwell, W. J. (2002). The influence of cooling rate on the fracture properties of a thermoplastic-based fibre-metal laminate. Journal of Reinforced Plastics and Composites, 21(8), 749-772.
  • Guo, Q. (Ed.). (2018). Thermosets: Structure, properties, and applications (2nd ed.). Elsevier.
  • Hoang-Ngoc, C.-T., & Paroissien, E. (2010). Simulation of single-lap bonded and hybrid (bolted/bonded) joints with flexible adhesive. International Journal of Adhesion and Adhesives, 30(2), 117-129.
  • Houssam, S. (n.d.). Review of fatigue strength evaluation of local stresses in welded joints.
  • Li, X., Zhang, T., Li, S., Liu, H., Zhao, Y., & Wang, K. (2021). The effect of cooling rate on resistance-welded CF/PEEK joints. Journal of Materials Research and Technology, 12, 53-62.
  • Loureiro, A. L., Da Silva, L. F. M., Sato, C., & Figueiredo, M. A. V. (2010). Comparison of the mechanical behaviour between stiff and flexible adhesive joints for the automotive industry. The Journal of Adhesion, 86(8), 765-787.
  • Mallaradhya, H. M., & TJPRC. (2018). Resistance spot welding: A review. International Journal of Mechanical and Production Engineering Research and Development, 8(2), 403-418.
  • Pagliaro, P., Prime, M. B., Robinson, J. S., Clausen, B., Swenson, H., Steinzig, M., & Zuccarello, B. (2011). Measuring inaccessible residual stresses using multiple methods and superposition. Experimental Mechanics, 51(7), 1123-1134.
  • Rice, R. C. (Ed.). (2011). Metallic materials properties development and standardization (MMPDS): Scientific report.National Technical Information Service.
  • Sankaranarayanan, R., & Hynes, N. R. J. (2019). Friction riveting for joining of wide range of dissimilar materials. In Advances in Basic Science (ICABS 2019) (p. 150004). AIP Publishing.
  • Saruwatari, N., Kagami, H., & Nakayama, Y. (2023). Effect of short-time heating after ECAP processing on mechanical properties of 6061 aluminum alloy. Materials Transactions, 64(3), 429-435.
  • Stankiewicz, K., Lipkowski, A., Kowalczyk, P., Giżyński, M., & Waśniewski, B. (2024). Resistance welding of thermoplastic composites, including welding to thermosets and metals: A review. Materials, 17(19), 4797.
  • Stavropoulos, P., & Sabatakakis, K. (2024). Quality assurance in resistance spot welding: State of practice, state of the art, and prospects. Metals, 14(2), 185.
  • Tabatabaeian, A., Ghasemi, A. R., Shokrieh, M. M., Marzbanrad, B., Baraheni, M., & Fotouhi, M. (2022). Residual stress in engineering materials: A review. Advanced Engineering Materials, 24(7), 2100786.
  • Teng, T.-L., & Chang, P.-H. (2004). Effect of residual stresses on fatigue crack initiation life for butt-welded joints. Journal of Materials Processing Technology, 145(3), 325-335.
  • Tsivouraki, N., Tserpes, K., & Sioutis, I. (2024). Modelling of fatigue delamination growth and prediction of residual tensile strength of thermoplastic coupons. Materials, 17(2), 362.
  • Waśniewski, B. (2016). Duroplasty oraz termoplasty wysokotemperaturowe w prepregach jako osłony kompozytów węglowych do wytwarzania struktur lotniczych. Prace Instytutu Lotnictwa, 243, 28-39.
  • Zhang, J., Liu, G., An, P., Yu, K., Huang, J., Gu, Y., Yao, J., Cao, R., Liu, H., Chen, C., Zhang, C., & Wang, M. (2023). The effect of cooling rates on crystallization and low-velocity impact behaviour of carbon fibre reinforced poly(aryl ether ketone) composites. Composites Part B: Engineering, 254, 110569.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-481cb97a-18af-489e-ac1d-aa9e6c84d2b8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.