PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Computer modelling of ductile iron solidification using FDM and CA methods

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The purpose of the work was the presentation of tool for modelling of solidification process, for prediction of some structure parameters in DI by the given chemical composition of alloy and for given boundary condition of casting. Design/methodology/approach: Two mathematical models and methods developed by authors have been presented: micromodelling with using of finite difference method (FDM) and mesomodelling with using of cellular automaton method (CA). Findings: The FDM was used for solving the DI solidification model, including heat conductivity equation with source function, boundary condition for casting, equations for austenite and eutectic grains nucleation depended on the changing undercooling, the Weibull’s formula for graphite nodule count, Kolmogorov’s equation for calculation of volume fraction of phases (eutectics and austenite). A set of equations, after transformation to a difference form, were solved by the finite difference method, using an iteration procedure. The correctness of the mathematical model has been experimentally verified in the range of most significant factors, which include temperature field, the value of maximum undercooling, and the graphite nodule count interrelated with the casting cross-section. Literature offers practically no data on so confronted process model and simulation program. The CA model was used for the simulation of the grains’ shapes in connection with FD for temperature field and solute redistribution in the grain scale. Practical implications: FDM modeling gives the possibility of statistical description of microstructure but the geometrical shape of grains is assumed a priori. In CA modeling the grain shape is not assumed, but this is the result of modeling. The use of FDM gives results quantitatively comparable to the process in real casting, particularly according to temperature fields and number of graphite spheroids. Originality/value: The CA method gives on the present stage credible qualitative results but this method is more perspective for good reproducing of the real process of solidification.
Rocznik
Strony
310--323
Opis fizyczny
Bibliogr. 48 poz., rys., tab., wykr.
Twórcy
  • Faculty of Foundry Engineering, AGH University of Sciences and Technology, ul. Reymonta 23, 30-059 Kraków, Poland
  • Faculty of Foundry Engineering, AGH University of Sciences and Technology, ul. Reymonta 23, 30-059 Kraków, Poland
autor
  • Faculty of Foundry Engineering, AGH University of Sciences and Technology, ul. Reymonta 23, 30-059 Kraków, Poland
autor
  • Faculty of Foundry Engineering, AGH University of Sciences and Technology, ul. Reymonta 23, 30-059 Kraków, Poland
autor
  • Faculty of Foundry Engineering, AGH University of Sciences and Technology, ul. Reymonta 23, 30-059 Kraków, Poland
Bibliografia
  • [1] H. Rafii-Tabar, A. Chirazi, Multi-scale computational modelling of solidification phenomena, Physics Reports - Review Section of Physics Letters 365 (2002) 145-249.
  • [2] P.D. Lee, A. Chirazi, R.C. Atwood, W. Wang, Multis-cale modelling of solidification microstructures, including microsegregation and microporosity, in an Al-Si-Cu alloy, Materials Science and Engineering A 365 (2004) 57-65.
  • [3] A.R. Umantsev, V.V. Vinogradov, V.T. Borisov, Mathematical modeling of the dendrite growth in the undercooled melt, Kristallografia 30 (1985) 455-460 (in Russian).
  • [4] A.R. Umantsev, V.V. Vinogradov, V.T. Borisov , Modeling of the dendrite structure evolution, Kristallografia 31 (1986) 1002-1008 (in Russian).
  • [5] M. Rappaz, Ch.A. Gandin, Probabilistic modeling of microstructure formation in solidification processes, Acta Metallurgica et Materialia 41 (1993) 345-360.
  • [6] S. Pan, M. Zhu, A three-dimensional sharp interface model for the quantitative simulation of solutal dendritic growth, Acta Materialia 58 (2010) 340-352.
  • [7] S. Mosbah, M. Bellet, Ch.A. Gandin, Simulation of solidification grain structures with a multiple diffusion length scales model, in Modeling of Casting, Welding and Advanced Solidification Processes - XII, TMS, Vancouver, Canada, 2009, 485-493.
  • [8] G. Guillemot, Ch.A. Gandin, M. Bellet, Interaction between single grain solidification and macro segregation: application of a cellular automaton - finite element model, Journal of Crystal Growth 303 (2007) 58-68.
  • [9] G. Guillemot, Ch.A. Gandin, M. Bellet, Interaction between single grain solidification and macro segregation: application of a cellular automaton - finite element model, Journal of Crystal Growth 303 (2007) 58-68.
  • [10] V. Pavlyk, U. Dilthey, Simulation of weld solidification microstructure and its coupling to the macroscopic heat and fluid flow modelling, Modelling and Simulation in Materials Science and Engineering 12 (2004) 33-45.
  • [11] M.F. Zhu, C.P. Hong, A three dimensional modified cellular automaton model for the prediction of solidification microstructures, ISIJ International 42 (2002) 520-526.
  • [12] D.J. Jarvis, S.G.R. Brown, J.A. Spittle, Modelling of non-equilibrium solidification in ternary alloys: comparison of 1D, 2D, and 3D cellular automaton-finite difference simulations, Materials Science and Technology 16 (2000) 1420-1424.
  • [13] A.A. Burbelko, E. Fraś, W. Kapturkiewicz, Modelling of dendritic growth during unidirectional solidification by the method of cellular automata, Materials Science Forum 649 (2010) 217-222.
  • [14] A.A. Burbelko, E. Fraś, W. Kapturkiewicz, E. Olejnik, Nonequilibrium kinetics of phase boundary movement in cellular automaton modelling, Materials Science Forum 508 (2006) 405-410.
  • [15] S.G.R. Brown, N.B. Bruce, Three-dimensional cellular automaton models of microstructural evolution during solidification, Journal of Materials Science 30 (1995) 1144-1150.
  • [16] MF. Zhu, CP. Hong, Modeling of microstructure evolution in regular eutectic growth, Physical Review B 66/155428 (2002) 1-8.
  • [17] M.F. Zhu, C.P. Hong, Modeling of microstructure evolution in eutectic and peritectic solidification, Modeling of Casting, Welding and Advanced Solidification Processes - X, TMS, Warrendale, Pennsylvania, 2003, 91-98.
  • [18] M.F. Zhu, C.P. Hong, D.M. Stefanescu, Y.A. Chang: Computational modeling of microstructure evolution in solidification of aluminum alloys, Metallurgical and Materials Transactions 38B (2007) 517-524.
  • [19] D.M. Stefanescu, A. Catalina, X. Guo, L. Chuzhoy, M.A. Pershing, G.L. Biltgen, Prediction of room temperaturę mcrostructure and mechanical properties in iron castings, in Modeling of Casting, Welding and Advanced Solidification Process, The Minerals, Metals and Materials Society 1998, 455-462.
  • [20] S.M. Yoo, A. Ludwig, P.R. Sahm, Numerical simulation of nodular cast iron in permanent moulds, Solidification Processing, Renmor House, Univ. of Sheffield 1997, 494-497.
  • [21] S. Chang, D. Shangguan, D.M. Stefanescu, Modeling of the liquid/solid and the eutectoid phase transformation in spheroidal graphite cast iron, Metallurgical and Materials Transactions 23A (1992) 1333-1346.
  • [22] T. Skaland, O. Grong, T. Grong, A model for the graphite formation in ductile cast iron, Metallurgical and Materials Transactions 24A (1993) 2347-2353.
  • [23] G. Lesoult, M. Castro, J. Lacaze, Solidification of spheroidal graphite cast iron, Acta Metallurgica et Materialia 46, (1998) 983 -995, 997-1010.
  • [24] M.I. Onsoien, O. Grong, O. Gundersen, T. Skaland, A process model for the micro-structure evolution in ductile cast iron: part I, Metallurgical and Materials Transactions 30A (1999) 1053-1068.
  • [25] E. Fraś, W. Kapturkiewicz, A.A. Burbelko, H.F Lopez, Modeling of graphitization kinetics in nodular cast iron casting, in: Modeling of Casting, Welding and Advanced Solidification Processes IX, Aachen, Shaker 2000, 885-892.
  • [26] D.M. Stefanescu, D.K. Bandyopadhyay, On the solidification kinetics of spheroidal graphite cast iron, in: Proceedings of the 3rd International Symposium “Metallurgy of Cast Iron”, Tokyo, Japan, 1989, 15-26.
  • [27] D.K. Banerjee, D.M. Stefanescu, Structural transitions and solidification kinetics of SG cast iron during directional solidification experiments. AFS Transactions 99 (1991) 747-759.
  • [28] G.L. Rivera, R. Boeri, J. Sikora, Revealing the solidification structure of nodular iron, Cast Metals 8 (1995) 1-5.
  • [29] D.J. Celentano, P.M. Dardati, L.A. Godoy, R.E. Boeri, Computational simulation of microstructure evolution during solidification of ductile cast iron, International Journal of Cast Metals Research 21 (2008) 416-426.
  • [30] W. Kapturkiewicz, A.A. Burbelko, M. Górny, Kinetic model of ductile iron solidification with experimental verification, Archives of Foundry Engineering 9 (2009) 95-102.
  • [31] A.N. Kolmogorov, K statističeskoj teorii kristallizacii metallov, Izvestiya Akademii Nauk SSSR 3 (1937) 355-359 (in Russian).
  • [32] W. Oldfield, A quantitative approach to casting solidification. Freezing of cast iron, Transactions ASM 59 (1966) 945-961.
  • [33] E. Fraś, K. Wiencek, M. Górny, H. Lopez, Nucleation and grains density - a theoretical model and experimental verification, Archives of Metallurgy 46 (2001) 317-333.
  • [34] R. Döpp, The Metallurgy of Cast Iron, Georgi Publishing Co, S. Saphorin, 1975.
  • [35] D. M. Stefanescu, Science and Engineering of Casting Solidification second ed., Springer Verlag, 2008.
  • [36] F. Neumann, The influence of additional elements on the physics chemical behavior of carbon in carbon saturated molten iron, recent research in cast iron, Gordon and Breach, New York, 1968.
  • [37] E. Fraś, K. Wiencek, M. Górny, H.F. Lopez, Nodule count in ductile iron: theoretical model based on Weibull statistic, International Journal of Cast Metals Research 18 (2005) 156-162.
  • [38] K. Wiencek, J. Ryś, The estimation of Fe3C particle density in steel by simple counting measurements made in plan sections, Materials Engineering 3 (1998) 396-399.
  • [39] B. Chopard, M. Droz, Cellular automata modeling of physical systems, Cambridge University Press, Cambridge, UK, 2005.
  • [40] J. Hoyt, M. Asta, Atomistic computation of liquid diffusivity, solid-liquid interfacial free energy, and kinetic coefficient in Au and Ag, PhysICS Review B 65/214106 (2002) 1–11.
  • [41] A. Burbelko, Mezomodeling of solidification using a cellular automaton, UWND AGH, 2004, Crakow (in Polish).
  • [42] W.W. Mullins, R.F. Sekerka, Morphological stability of a particle growing by diffusion or heat flow, Journal of Applied Physics 34 (1963) 323-329.
  • [43] U. Dilthley, V. Pavlik, Numerical simulation of dendrite morphology and grain growth with modified cellular automata, Modeling of Casting, Welding and Advanced Solidification Processes VIII, TMS, Warrendale, 1998, 589-596.
  • [44] A.A. Burbelko, W. Kapturkiewicz, D. Gurgul, Analysis of causes and means to reduce artificial anisotropy in modelling of the solidification process on cellular automaton, Solidification Processing 2007, Proceedings of the 5th Decennial International Conference on Solidification Processing, The University of Sheffield, UK, 2007, 31-35.
  • [45] O.Kubaschewski, Iron – Binary Phase Diagrams, Springer-Verlag, Berlin, 1985.
  • [46] Ch.A. Gandin, M. Rappaz, A coupled finite element-cellular automaton model for the prediction of dendritic grain structures in solidification processes, Acta Metallurgica et Materialia 42 (1994) 2233-2246.
  • [47] G. Rivera, R. Boeri, J. Sikora, Revealing and characterising solidification structure of ductile cast iron, Materials Science and Technology 18 (2002) 691-697.
  • [48] G. Rivera, P.R. Calvillo, R. Boeri, Y. Houbaert, J. Sikora, Examination of the solidification macrostructure of spheroidal and flake graphite cast irons using DAAS and ESBD, Materials Characterization 59 (2008) 1342-1348.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4819771b-797e-4c66-9ca6-6795f402a884
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.