PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Micro-EDM process modeling and machining approaches for minimum tool electrode wear for fabrication of biocompatible micro-components

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Micro-electrical discharge machining (micro-EDM) is a potential non-contact method for fabrication of biocompatible micro devices. This paper presents an attempt to model the tool electrode wear in micro-EDM process using multiple linear regression analysis (MLRA) and artificial neural networks (ANN).The governing micro-EDM factors chosen for this investigation were: voltage (V), current (I), pulse on time (Ton) and pulse frequency (f). The proposed predictive models generate a functional correlation between the tool electrode wear rate (TWR) and the governing micro-EDM factors. A multiple linear regression model was developed for prediction of TWR in ten steps at a significance level of 90%. The optimum architecture of the ANN was obtained with 7 hidden layers at an R-sq value of 0.98. The predicted values of TWR using ANN matched well with the practically measured and calculated values of TWR. Based on the proposed soft computing-based approach towards biocompatible micro device fabrication, a condition for the minimum tool electrode wear rate (TWR) was achieved.
Rocznik
Strony
97--111
Opis fizyczny
Bibliogr. 36 poz., rys., tab.
Twórcy
autor
  • Department of Mechanical Engineering, Technical University of Denmark, Kgs. Lyngby, Denmark
Bibliografia
  • [1] DION I., BAQUEY C., MONTIES J.R. ,HAVLIK P., 1993, Haemocompatibility of Ti6A14V alloy, Biomaterials, 14/2, 122-6.
  • [2] OLDANI C., DOMINGUEZ A., 2012, Titanium as a biomaterial for implants, Recent Advances in Arthroplasty, ISBN 978-953-307-990-5, 149-162.
  • [3] DADVINSON A., GERGETTE F., 1986, State of the art in materials for orthopedic prosthetic devices, Proceedings of Implant Manufacturing and Materials Technology, Soc. Manufact.Eng., 87-122, 122-126.
  • [4] KATTI K.S., 2004, Biomaterials in total joint replacement, Colloids and Surfaces B: Biointerfaces, 39/3, 133- 142, ISSN 09277765.
  • [5] SARMIENTO A., ZYCH G., LATTA L., TARR R., 1979, Clinical experiences with a titanium alloy total hip prosthesis, Clinical Orthopaedics and Related Research, 144, 166-173, ISSN 0009921X.
  • [6] SUN F.J., QU S.G., PAN Y.X., LI X.Q., LI F.L., 2015, Effects of cutting parameters on dry machining Ti-6Al-4V alloy with ultra-hard tools, International Journal of Advanced Manufacturing Technology, 79/1, 351-360.
  • [7] FANG N., PAI P.S., EDWARDS N., 2013, A comparative study of high-speed machining of Ti–6Al–4V and Inconel 718 - part I: effect of dynamic tool edge wear on cutting forces, International Journal of Advanced Manufacturing Technology, 68/5, 1839-1849.
  • [8] LACALLE L.N., PEREZ-BILBATUA J., SANCHEZ, J.A., LLORENTE J.I., GUTIERREZ A., ALBONIGA J., 2000, Using high pressure coolant in the drilling and turning of low machinability alloys, International Journal of Advanced Manufacturing Technology, 16/2, 85-91.
  • [9] OBARA K., NISHINO Y., NISHIE H.A., YOKOMIZO M., 1982, The mechanical properties of P/M Ti-6A1-4V alloy, Titanium and titanium alloys, 2345-2358.
  • [10] MURALI M., YEO S.H., 2004, Rapid biocompatible micro device fabrication by micro electro-discharge machining, Biomedical microdevices, 6/1, 41-45.
  • [11] PLAZA S., SANCHEZ J,A., PEREZ E., GIL R., IZQUIERDO B., ORTEGA N., POMBO I. 2014, Experimental study on micro EDM-drilling of Ti6Al4V using helical electrode, Precision Engineering, 38/4, 821-827.
  • [12] FONDA P., WANG Z., YAMAZAKI K., AKUTSU Y., 2008, A fundamental study on Ti-6Al-4V’s thermal and electrical properties and their relation to EDM productivity, Journal of Material Processing Technology, 202, 583-589.
  • [13] KAO J, Y., TSAO C.C., WANG S.S., HSU C.Y., 2010, Optimization of the EDM parameters on machining Ti–6Al–4V with multiple quality characteristics, International Journal of Advanced Manufacturing Technology, 47/1, 395-402.
  • [14] MOSES M., JAHAN M.P., 2015, Micro-EDM machinability of difficult-to-cut Ti-6Al-4V against soft brass, International Journal of Advanced Manufacturing Technology, 81/5, 1345-1361.
  • [15] AZAD M.S., PURI A.B., 2012, Simultaneous optimization of multiple performance characteristics in micro-EDM drilling of titanium alloy, International Journal of Advanced Manufacturing Technology, 61/9, 1231-1239.
  • [16] GU L., LI L., ZHAO W., RAJURKAR K.P., 2012, Electrical discharge machining of Ti6Al4V with a bundled electrode, International Journal of Machine Tools and Manufacture, 53/1, 100-106.
  • [17] MEENA, V.K., AZAD M.S., 2012, Grey relational analysis of micro-EDM machining of Ti-6Al-4V alloy, Materials and Manufacturing Processes, 27/9, 973-977.
  • [18] RAHMAN M.M., KHAN A.R., KADIRGAMA K., NOOR, M.M., ABAKAR R.A., 2010, Optimization of machining parameters on tool wear rate of Ti-6Al-4V through EDM using copper tungsten electrode, A Statistical Approach, Advanced Materials Research, 152-153/1, 1595-1602.
  • [19] LEE S.H., LI X.P., 2001, Study of the effect of machining parameters on the machining characteristics in electrical discharge machining of tungsten carbide, Journal of Materials Processing Technology, 115/3, 344-358.
  • [20] Li X., WANG Y., ZHAO F., WU M., LIU Y., 2014, Influence of high frequency pulse on electrode wear in micro-EDM, Defence Technology, 10/3, 316-320.
  • [21] BISSACCO G., VALENTINCIC J., HANSEN H.N., WIWE B.D., 2010, Towards the effective tool wear control in micro-EDM milling, International Journal of Advanced Manufacturing Technology, 47/1, 3-9.
  • [22] WANG J., QIAN J., FERRARIS E., REYNAERTS D., 2017, In-situ process monitoring and adaptive control for precision micro-EDM cavity milling, Precision Engineering, 47/1, 261-275.
  • [23] D’URSO G., RAVASIO C., 2017, Material-Technology Index to evaluate micro-EDM drilling process, Journal of Manufacturing Processes, 26/1, 13-21.
  • [24] PHAM D.T., IVANOV A., BIGOT S., POPOV K., DIMOV S., 2007, A study of micro-electro discharge machining electrode wear, Journal of Mechanical Engineering Science – Proceedings of the Institution of Mechanical Engineers, 221, 605-612.
  • [25] GLANTZ S.A., SLINKER B.K., 2000, Primer of applied regression and analysis of variance, second ed. McGraw-Hill, New York, NY.
  • [26] KVANLI A.H., PAVUR R.J., KEELING K.B., 2006, Concise managerial statistics, Engage learning P, 1, 8182.
  • [27] LEHMANN E.L., CASELLA G., 1998, Theory of point estimation, second ed. Springer, New York.
  • [28] ZABORSKI S., POROS D., 2008, Effect of process parameters on the condition of the wire electrode in WEDM of Ti6Al4v, Journal of Machine Engineering, 8/2, 52-64.
  • [29] ABBAS N.M., KUNIEDA M., 2016, Increasing discharge energy of micro-EDM with electrostatic induction feeding method through resonance in circuit, Precision Engineering, 45/1, 118-125.
  • [30] WONG Y.S., RAHMAN M., LIM H. S., HAN H., RAVI N., 2003, Investigation of micro-EDM material removal characteristics using single RC-pulse discharges, Journal of Materials Processing Technology, 140/1-3, 303-307.
  • [31] TRYCH A., MARKIEWICZ S., 2012, Idea of the experimental stand for micro-electrical discharge machining using carbon fibres as the tool electrodes, Journal of Machine Engineering, 12/2,105-110.
  • [32] MARADIA U., BOCCADORO M., STIRNIMANN J., KUSTER F., WEGENER K., 2015, Electrode wear protection mechanism in meso–micro-EDM, Journal of Materials Processing Technology, 223/1, 22-33.
  • [33] JILANI S.T., PANDEY P.C., 1982, Analysis and modelling of EDM parameters, Precision Engineering, 4/4, 215-221.
  • [34] HASCALIK A., CAYDAS U., 2007, Electrical discharge machining of titanium alloy (Ti–6Al–4V), Applied Surface Science, 253/22, 9007-9016.
  • [35] SOE Y.H., TANABE I., IYAMA T., ABE Y., 2010, Control of tool temperature using neural network for machining materials with low thermal conductivity, Journal of Machine Engineering, 10/3, 78-89.
  • [36] ESCALONA M. P., MAROPPOULOS P.G., 2010, Artificial neural networks for surface roughness prediction when face milling Al 7075-T7351, Journal of Materials Engineering and Performance, 19/2, 185-193.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-480deb79-7816-443c-bbd4-75ee7812b578
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.