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MICRO-EDM PROCESS MODELING AND MACHINING APPROACHES  

FOR MINIMUM TOOL ELECTRODE WEAR FOR FABRICATION  

OF BIOCOMPATIBLE MICRO-COMPONENTS 

Micro-electrical discharge machining (micro-EDM) is a potential non-contact method for fabrication  

of biocompatible micro devices. This paper presents an attempt to model the tool electrode wear in micro-EDM 

process using multiple linear regression analysis (MLRA) and artificial neural networks (ANN).The governing 

micro-EDM factors chosen for this investigation were: voltage (V), current (I), pulse on time (Ton) and pulse 

frequency (f). The proposed predictive models generate a functional correlation between the tool electrode wear 

rate (TWR) and the governing micro-EDM factors. A multiple linear regression model was developed for 

prediction of TWR in ten steps at a significance level of 90%. The optimum architecture of the ANN was 

obtained with 7 hidden layers at an R-sq value of 0.98. The predicted values of TWR using ANN matched well 

with the practically measured and calculated values of TWR. Based on the proposed soft computing-based 

approach towards biocompatible micro device fabrication, a condition for the minimum tool electrode wear rate 

(TWR) was achieved. 

1. INTRODUCTION 

Metals are used as biomaterials in order to fabricate micro-devices due to their 

biocompatibility, favorable mechanical properties and ability to deform plastically. Among 

the metals, titanium-based implant materials including pure titanium and Ti-6Al-4V are 

widely used because they do not induce allergic reactions, causes formation of an oxide film 

over the surface, have low density and have excellent corrosion resistance [1,2]. Titanium 

alloys are characterized by a high superficial energy, because of which, after implantation, 

helpful body reactions are generated [2]. The Ti6Al4V alloy is used as a standard material 

to manufacture dental, spinal, trauma and orthopedic implants.  

The key issues of Ti6Al4V alloy to be employed in micro-device fabrication include 

poor manufacturing accuracy for cutting leading to issues with articulations of surfaces and 

poor attachment to the bone resulting in loosening of the implant [3]. In addition, Ti6Al4V 

alloy do not react with the human tissues, causing undesirable movements in the boundary 

of the implant and the tissue, eventually resulting in crack formation on the implant.  
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One of the existing methods also to compensate for the manufacturing inaccuracy 

during fabrication of the implants using Ti6Al4V alloys the application of bioactive 

coatings [4], which improves the bonding of the implant with the bone and consequently 

increases the life of the implant. Since the thermal expansion coefficients of the implant and 

the coating are generally different, thermal stresses are generated during fabrication leading 

to crack formation and crack propagation at the implant-coating interface [2,5].  

Also, the chemical reactions among the coating and Ti6Al4V alloy constantly deteriorates 

the strength of the interface.  

Several conventional ‘contact machining’ methods have been used for fabrication  

of micro-devices and components using Ti6Al4V alloy [6-9]. The problems with these 

methods include formation of residual stresses and crack formation on micro-device 

surfaces, low dimensional accuracy of machined features and non-uniform removal  

of material during fabrication [8]. One of the advanced ‘non-contact’ micromachining 

technologies used to fabricate biomedical micro-devices is micro-electrical discharge 

machining (micro-EDM), and an attempt to apply ultrasonic vibration-assisted micro-EDM 

for fabrication of a biocompatible micro-channel has been reported in [10].  

The micro-EDM technology is a precision machining technique for micro fabrication 

using Ti6Al4V alloy, and has several advantages over the conventional machining methods 

[11-14]. Some researchers have attempted to investigate micro-EDM drilling process  

of Ti6Al4V alloy [11]. A fundamental investigation aiming at developing a correlation 

between the properties of Ti6Al4V alloy and productivity was described in [12]. A multi-

objective optimization of Ti6Al4V for minimum tool wear ratio, maximum material 

removal rate and minimum surface roughness was attempted [13]. Recently in [14],  

the capability of the micro-EDM process in machining of Ti6Al4V alloy using soft material 

brass (electrode –tool) have been demonstrated.  

Nevertheless, one of the challenges in micro-EDM of Ti6Al4V alloy is tool electrode 

wear, leading to inaccuracy in the manufacturing of the micro-device. Being  

a complementary machining technology [10], the dimensional inaccuracy on the tool 

electrode because of the tool wear is directly reflected on the biomedical device fabricated 

using Ti6Al4V alloy. Tool electrode wear causes variations of 20-30% in the geometrical 

dimensions of blind micro-slots of Ti6Al4V alloy machined using micro-EDM, even at  

the same processing conditions [14]. A few research papers have been published with  

a comparative analysis of tool electrode materials [11], identification of best parameters [13] 

and analysis of surface roughness [10] for machining of Ti6Al4V alloy. In spite of several 

investigations demonstrating the capability of Ti6Al4V alloy for fabrication of micro 

devices using micro-EDM and other similar processes, no attempts have been made so far, 

to address the issue of tool electrode wear in micro device fabrication, and to model  

the phenomenon. Therefore, the objective of this paper is to analyze and model the tool 

electrode wear in micro-EDM of Ti6Al4V alloy material for drilling kinematic. The tool 

wear characteristics are modeled with the use of linear regression technique and artificial 

neural network methods. The micro-EDM controllable factors taken into consideration 

during the modeling are: discharge current, discharge frequency, pulse ‘on-time’ and gap 

voltage. Based on the wear modeling, the results of tool wear are analyzed for achieving  

the minimum tool electrode wear in micro-EDM of Ti6Al4V alloy.  



Micro-EDM Process Modeling and Machining Approaches for Minimum Tool Electrode Wear for Fabrication…  99 
 

 

 

2. METHODOLOGY 

The aspects of the process capabilities of micro-EDM, which enables it as  

an appropriate and efficient technique for biocompatible micro device fabrication has been 

elaborated in [10]. Melting and vaporization is the basic material removal mechanism in 

micro-EDM process. In a recent work on micro-EDM of Ti6Al4V alloy [15], systematic 

statistical design using L18 orthogonal array was used and an experimental approach was 

followed to identify the significant parameters and to optimize the performance 

characteristics. In electrical discharge-based processes, because the erosion of material 

occurs from anode and cathode electrodes, investigations on tool wear involves  

an estimation of the ratio of the tool wear to the material removal [13,16]. Considering  

the smaller dimensions of the tools and continuous changes in the dimensions and shape  

of the tool over time, the tool wear needs to be studied and assessed independently to 

facilitate effective tool wear compensation. Accordingly, in this work, an alternative 

approach for understanding the tool wear phenomenon involving process modeling using 

regression analysis and artificial neural networks is detailed. The tool, workpiece dielectric 

properties are presented in Table 1. 

Table 1 Tool electrode, workpiece and dielectric properties 

Tool electrode (WC) 

 

Ø400 µm 

Working length = 1500 µm 

Young’s 

modulus 

630 GPa 

Ultimate tensile 

strength 

344 MPa 

Density 

15.63 g/cm
3 

Thermal 

conductivity 

110 W/mk 

Melting point 

3100 K 

Electrical 

resistivity 

0.2 µΩm 

Workpiece ( Ti6Al4V) 20 mm × 10 mm × 

1 mm 

wt (%) 

Ti: 89-90% 

Al: 5.0-7.0% 

V: 3-5% 

Fe: 0.25% 

O: 0.2% 

Young’s 

modulus 

119 GPa 

Ultimate tensile 

strength 

1020 MPa 

Density 

4.5 g/cm
3 

Thermal 

conductivity 

7.2 W/mk 

Melting point 

1900 K 

Electrical 

resistivity 

1.7 µΩm 

Dielectric (Hydrocarbon oil)  

Applied in the form of a jet 

from the side of the tool 

axis 

Kinematic 

viscosity 

0.02 cm
2
/s 

Mass density 

0.8 g/cm
3 

Electrical 

conductivity 

2 × 10
-8

 µΩcm
-1 

Fig. 1 shows a schematic of the methodology of this work. The tool electrode wear 

phenomenon in the micro-EDM process is analyzed by considering the governing 

processing conditions, as discussed in the literature. The tool wear rate is mathematically 

expressed as, 

TWR = (π/4) × Dt
2
 × Lt (1) 
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where, Dt is the diameter of the tool electrode in µm and Lt is the linear tool electrode wear 

(µm) during the process.  

The tool wear rate (TWR) is modeled on a preliminary basis using linear regression 

analysis. Further, the artificial neural network (ANN) is used for modeling. The optimum 

configuration of the ANN is selected based on the criterion of minimum mean square error 

(MSE). This is followed by selection of the processing conditions for the minimum tool 

electrode wear for fabrication of biocompatible micro devices, and in this investigation,  

a simple case involving drilling of holes of nominal Ø400 µm and depth of 1000 µm is 

considered. The governing micro-EDM processing conditions, range of factors controlling 

these processing conditions and reasons for selection are presented in Table 2. Various 

parameters and their levels based on the past experience and the review of literature. 

 

Fig. 1. A schematic of methodology for modeling and machining approaches for minimum tool electrode wear in 

biocompatible micro-device (holes) fabrication using micro-EDM 

Table 2. Selection of micro-EDM processing conditions, range of factors and reason for selection of factors for 

modeling and analysis 

 

 

In the Sarix EDM machine, the measurement unit of peak current is expressed as  

an index and there is not a direct correlation with the actual value of current expressed in 

Ampere. During the micro-EDM process, the current value in amperes varied between 1 A 

 

 Tool wear rate in micro-EDM 

process  

Selection of the governing micro-

EDM processing conditions 

Modeling of tool wear rate using 

linear regression analysis (LRA) 

 

Dielectric 

supply 

Tool 

electrode 

Micro-EDM process 

Optimization of the configuration 

and architecture of the ANN 

model 

 

Determination of the processing 

conditions for minimum tool 

electrode wear 

Governing 

Micro-EDM factor 
Unit 

Range of 

factors 

Effect on tool 

electrode wear 
Reason for selection 

Voltage (V) V 80 to 150 Increases [13] 
Directly controls the electric field and 

discharge energy during micro-EDM 

Current (I) index 20 to 80 Increases [17] 
Influences the discharge energy and 

heating of tool surface. 

Pulse on-time (Ton) µs 0.5 to 2.0 Decreases [18-19] 
A factor that affects distribution of 

thermal energy on tool surface. 

Pulse frequency (f) kHz 150 to 250 Increases [20] 

The current density on the surface of 

tool electrode varies with the 

frequency of discharges. 
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to 15 A, the values are based on earlier measurement results at similar processing conditions 

[21-23]. Though the exact magnitudes of the peak current corresponding to the indexes and 

pulse shapes are not accurately measured at each instant, it is observed that the current 

indexes are proportional to the magnitude of currents in Amperes. In this analysis,  

the current indexes are varied between 20 and 80.  

3. RESULTS AND DISCUSSION 

The experimental data of tool wear rate (TWR) is presented in Fig. 2. In the figure, 

though all the data points are represented, the trial numbers with spacing of five are only 

presented. A maximum TWR of 175000 µm
3
/s is observed from the data chosen for this 

analysis. It shows a variation in the magnitude of TWR even by 12 times, considering all  

the variations in the processing conditions. This is because, when a tool electrode of circular 

cross-section is used for spark machining of micro-features, tool material is worn out both 

from the front as well as the side [24]. The lateral wear could be attributed to the effect  

of abrasion of debris particle and discharges occuring between these particles and the side 

walls of the tool, see Fig. 3. The removal of material from the tool electrode depends on  

the intensity of electric field, which in turn vary in a random manner in accordance with  

the sparking control factors in micro-EDM.  

 

Fig. 2. Variation in the magnitude of tool wear rate with the number of trials 

Therefore, it is necessary to express the TWR as a function of the input processing 

conditions for the micro-EDM process using modeling approach. Models for prediction  

of TWR are developed from the data, based on linear regression analysis and artificial 

neural network.  
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Fig. 3. Phenomenon of lateral tool wears due to secondary discharges in micro-EDM 

3.1. MODELING OF TWR USING MULTIPLE LINEAR REGRESSION ANALYSIS (MLRA) 

The linear regression technique [25-27] is used to predict the TWR based on  

the variations in the input processing conditions. The trial numbers of 90 is sufficient to 

predict a relationship between the TWR and the governing micro-EDM factors.  

As the number of data points are large, normality of the data is not evaluated [26,28] 

further, and the statistical significance of the model using a confidence interval based on  

the probability could be directly applied on the TWR model. The developed model was 

found to be statistically significant at 90% confidence level. As can be observed from Fig. 4,  

the regression model could predict 92.2% of the variations in the TWR. The terms used for 

prediction using the model have also been presented. 

 

Fig. 4. An overview of multiple linear regression analysis of TWR  

Fig. 5 shows the results of multiple regression analysis plots of the average TWR with  

the interactions of governing micro-EDM factors voltage, frequency, current and pulse-on 

time. From the plots, it is evident that an interaction voltage × current leads to an increase in 

the TWR that directly affects the accuracy of the fabricated micro device. It is envisaged 
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that with a strong interaction between V and I, as seen from the linear relationship in  

the plot, the energy of the plasma as well as that of the striking electrons on the tool 

electrode frontal surface increases, resulting in a higher TWR [29]. A similar effect is noted 

by taking into account the interaction voltage × pulse on-time.  

 

Fig. 5. Interaction plots for TWR based on multiple linear regression analysis 

The results presented in Fig.5 could be interpreted based on statistical treatment  

of data presented in Fig. 2. In order to obtain the information on statistical model adequacy, 

the mean and standard deviation of TWR calculated are mean, ms = 58889 µm
3
/s, and 

standard deviation, σ = 38148 µm
3
/s. Therefore, it is evident that the TWR value change 

with process parameters, but the contribution from the randomness of the process also 

exists. It is envisaged that the process parameters and their two-factor interactions plays  

a role in the control of the TWR in the micro-EDM process in the investigation. 

In micro-EDM process, even for constant process settings of voltage, current and pulse 

on-time, a large variation in the discharge energies are observed because of the charging and 

discharging of the RC circuit [30,31]. Therefore, a control on the frequency settings is 

essential to maintain the productivity of the technology (material removal) even at lower 

discharge energy levels. However, in contradiction, a direct correlation between the energy 

E and the tool wear rate could be developed. Fig. 6 shows a schematic representation  

of the interaction between the discharge plasma and the electrodes in the micro-EDM 

process. Considering the plasma channel as a time dependent disc heat source with uniform 

heat flux profile [32], the heat flux q from the plasma channel of energy E can be  

expressed as:  

q = (V× I × Ton / π rp
2
) (2) 

where, rpis theradius of the heat source. Therefore, the interaction between voltage, current 

and pulse on time controls the heat flux and consequently, the tool wear. Moreover,  
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a relationship between boiling temperature of the electrode (θb), rp , discharge power (P) 

and fraction of discharge energy entering the electrode (F) is expressed as: 

θb = (P × F × 10
6
) / (k × rp× π

3/2
) × tan

-1 
((4 × a ×Ton× 10

6
) / rp

2
)
1/2

 (3) 

where, k is the thermal conductivity of the material in w/mK and a is the thermal diffusivity 

of the electrode material [33]. Investigations on spark machining of Ti6Al4V have revealed 

that lower thermal diffusivity and lower thermal conductivity of the material leads 

concentration of thermal energy on the workpiece during the action of heat flux on it [34]. 

The consequential effect is on the erosion of material from the tool electrode. Looking at  

the results obtained from the MLRA, it can be observed that the tool wear could be directly 

correlated with the process settings controlling the energy of the plasma E.  

   

Fig. 6. A schematic representing the direct role of energy of the plasma on tool wear in micro-EDM 

The other interactions are relatively less effective in controlling the erosion of material 

from the tool electrode, and therefore, do not have a direct impact on the precision  

of the micro-devices fabricated. Nevertheless, the MLRA approximation depicting  

the relationship between the tool wear and the process control factors would develop an 

understanding on the calculation of the applied wear compensations for the specific tool-

workpiece-dielectric combinations. The final MLRA equation for TWR is obtained as, 
 

TWR (µm
3
/s) = 55033 – 80 × V– 1234 × f + 2257 × I + 79413 × Ton +  

16.46 × I ×I–28255 × Ton × Ton + 10.88 × V ×f – 17.74 × V ×I –  (4) 

403 × V × Ton – 6.94 × f × I + 370.2 × f × Ton – 1003 ×I× Ton  

The sequence of building the multiple linear regression model is presented in Fig. 7.  

The multiple linear regression model is developed by including each of the factors 

expressed as V (X1), f (X2), I (X3) and Ton(X4). The model is developed using 10 steps  

in total.  
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  a) 

   

Fig. 7. A schematic showing: a) the TWR model building process by addition of individual micro-EDM control factors 

and their interactions, and b) relative impact of the governing micro-EDM factors 

3.2. MODELING USING ARTIFICIAL NEURAL NETWORK 

Artificial network is an advanced modeling technique that shows excellent learning 

and prediction capabilities suitable in any system encountered by minor uncertainties [35]. 

In this work, an intelligent algorithm for prediction of TWR is implemented as a function  

of the governing micro-EDM factors. The ninety observations included in this study is 

randomly divided into training (70%), validation (15%) and testing (15%). The observations 

used for training is used for adjusting the network in accordance with the errors.  

In validation, the network generalization is measured and when the generalization  

of the network stops improving, the training is stopped. The observations used for testing 

provides an independent measure of the network performance during the training and after  

the training. 

The artificial neural network is optimized based on the mean squared error (MSE). 

MSE is an estimator used to measure the squares of the difference between the predicted 

and actual values of a variable [25-27]. MSE is the average squared difference between  

the outputs and the targets. Lower values of MSE are better for this study. The multiple 

regression model provides a good estimate of the erosion of material from the tool electrode 

and the model helps to provide the micro-EDM factors for minimum tool wear.  

An approach towards a better approximation would be possible by constructing artificial 

neural networks for the minimum MSE.  

In order to obtain the correct network architecture, the numbers of hidden layers were 

varied from 1 to the maximum numbers allowed for the configuration (10000) for  

the minimum mean squared error (MSE) and R-sq value. The results of these iterations are 

presented in Table 2. The mean squared error was found to be very high for the number  

of hidden layers from 1 to 6. The architecture of the network with the minimum number  

b) 
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of hidden layers, minimum MSE and high R-sq value was acceptable with 7 hidden layers. 

Therefore, the input layers contain four inputs (voltage, current, pulse on-time and 

frequency). Fig. 8 shows the optimum architecture of the neural network with 7 hidden 

layers corresponding to the minimum MSE and the structure of the ANN model for 

prediction of the TWR based on Fig. 8 and Table 3 is shown in Fig. 9. The network 

structure shows voltage, current, pulse on time and frequency as the inputs (input layer), 7 

hidden layers and 1 output layer for predicting the tool wear rate. 

 

Fig. 8. The optimum architecture of the neural network with 7 hidden layers  

(minimum MSE and acceptable R-sq value of 0.98) 

Table 3. Results of the iterations of the neural network architecture with different hidden layers 

Sl. No Number of hidden 

layers 

Mean squared error 

(MSE) 
R-sq value Remarks 

1 1 high 0.77 

not acceptable, high MSE 

2 2 high 0.96 

3 3 high 0.98 

4 4 high 0.94 

5 5 high 0.99 

6 6 high 0.99 

7 7 0.91 0.98 Acceptable, minimum MSE 

8 8 high 0.98 

not acceptable, high MSE 

9 9 high 0.98 

10 10 high 0.99 

11 11 high 0.99 

12 15 high 0.98 

13 20 high 0.98 

14 10000 0.97 0.99 
Low MSE, but Large number 

of hidden layers 

The selected neural network was trained based on Levenberg-Marquardt algorithm to 

fit the four input factors and the values of TWR. 62 samples are used as the input to  

the network for training, and the network is adjusted in accordance with the error.  

The network testing data (14 samples) generates an independent measure of the 

performance of the network after the training. The validation data (14 samples) controls  

the training with the network generalization [36]. The Levenberg-Marquardt back 

propagation algorithm is a robust method for training of the data because it is reliable to 

determine a solution at all starting conditions of the controlling variables.  
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Fig. 9. Structure of the ANN model for prediction of tool wear rate (TWR) 

The performance of the developed ANN model is presented in Fig. 10. It is evident 

that for both training and validation the minimum MSE is achieved at epoch 7 based on  

the current configuration of the network. To analyze the training and validation of the data 

using the network, a correlation plot is generated. 

 

Fig. 10. Performance curve of the ANN model 

 

Fig. 11 Correlation plot between network output and target 
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A plot indicating the confirmation of the correlation between the predicted and 

experimental values of TWR is presented in Fig. 11. As can be observed from Fig. 9,  

the between the values of TWR predicted using the network (outputs) and  

the experimentally calculated values (target) shows an excellent fit.  

3.3. CONDITIONS FOR MINIMUM TWR 

In this work, the optimization algorithm provides a combination of input factors for  

the minimum TWR. Fig. 12 shows the prediction and optimization plot for TWR. The black 

lines indicate the trends of predicted values of TWR and the blue dashed lines are  

the optimized settings. Except the input factor frequency, all other factors follow  

a decreasing trend of TWR for the range of values selected for this investigation. 

 

Fig. 12. Prediction and optimization plot for TWR 

Based on this analysis, five different solutions are obtained as presented in Table 4. 

Among the processing conditions achieved, the lowest predicted TWR is observed 

corresponding to the process settings of voltage: 80 V, pulse frequency: 200 kHz, current 

index: 80 and pulse on time: 2 µs. Therefore, it is envisaged that for biocompatible micro 

device fabrication on Ti-6Al-4V alloy, the effective machining method would be based on 

these process settings. 

Table 4. Predicted TWR closest to the optimum solution 

Solutions 

Voltage ( 

X1) 

(in V) 

Frequency 

(X2) 

(in kHz) 

Current 

(X3) 

(in index) 

Pulse on 

time (X4) 

(in µs) 

Predicted 

minimum 

TWR 

(µm
3
/s) 

1 80 200 80 2 6282.1 

2 80 250 80 0.5 14107.2 

3 80 200 20 0.5 15087.4 

4 80 150 80 2 15185.5 

5 80 250 50 2 20267.3 
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4. CONCLUSIONS 

A soft computing-based approach for modeling of tool wear rate (TWR) in micro-

EDM using MLRA and ANN towards biocompatible micro device fabrication at minimum 

TWR is presented in this paper. Based on this work, the following conclusions can be 

drawn: 

1. The phenomenon of tool electrode wear during fabrication of micro devices using  

Ti-6Al-4V alloy was modeled using multiple linear regression analysis and artificial 

neural network techniques. It is envisaged that the approximation would generate 

pathways for understandings on computation of the wear compensation and wear 

corrections.  

2. The variation in the TWR values upto 12 times clearly indicates that even with  

a minor variation in the chosen governing micro-EDM process factors (V, I, Ton and 

f) causes larger changes in the TWR, and hence, a systematic modeling is necessary. 

Because of poor thermal conductivity and thermal diffusivity of Ti6Al4V, each 

discharge causes accumulation of thermal energy, which probably is the main cause 

for reaction forces on the tool electrode that leads to fluctuations in the amount  

of tool wear.  

3. The developed multiple linear regression model could predict with the governing 

micro-EDM factors and their two-factor interactions could predict variations in  

the TWR upto 92.2%, and the model was found to be significant at 90% confidence 

level. Therefore, this model could be applicable to the predictions in which a high 

precision is not necessary. The model results show a direct correlation between 

discharge energy and the tool wear. However, the developed model has a limitation 

that the input current value is represented only as current index, not in amperes.  

4. An ANN model was developed to predict the TWR corresponding to the governing 

micro-EDM factors and only for machine-tool applied in experiments. The TWR 

data was used for training, testing and validation. The MSE of the network was 

observed to be the minimum corresponding to 7 hidden layers with an R-sq value  

of 0.98. The TWR outputs generated using the network and the TWR data available 

was found to match thoroughly with an excellent fit. 

5. Based on this analysis of TWR for efficient biocompatible micro device fabrication, 

five different solutions for the process settings corresponding to the lowest TWR 

have been obtained. Among the predicted values, a TWR of 6282.1 µm
3
/s was 

achieved at V = 80 V, Current index of 80, Ton= 2 µs and f = 200 kHz. 
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