PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Robust speed estimation of an induction motor under the conditions of rotor time constant variability due to the rotor deep-bar effect

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Accurate information on Induction Motor (IM) speed is essential for robust operation of vector controlled IM drives. Simultaneous estimation of speed provides redundancy in motor drives and enables their operation in case of a speed sensor failure. Furthermore, speed estimation can replace its direct measurement for low-cost IM drives or drives operated in difficult environmental conditions. During torque transients when slip frequency is not controlled within the set range of values, the rotor electromagnetic time constant varies due to the rotor deep-bar effect. The model-based schemes for IM speed estimation are inherently more or less sensitive to variability of IM electromagnetic parameters. This paper presents the study on robustness improvement of the Model Reference Adaptive System (MRAS) based speed estimator to variability of IM electromagnetic parameters resulting from the rotor deep-bar effect. The proposed modification of the MRAS-based speed estimator builds on the use of the rotor flux voltage-current model as the adjustable model. The verification of the analyzed configurations of the MRAS-based speed estimator was performed in the slip frequency range corresponding to the IM load adjustment range up to 1.30 of the stator rated current. This was done for a rigorous and reliable assessment of estimators’ robustness to rotor electromagnetic parameter variability resulting from the rotor deep-bar effect. The theoretical reasoning is supported by the results of experimental tests which confirm the improved operation accuracy and reliability of the proposed speed estimator configuration under the considered working conditions in comparison to the classical MRAS-based speed estimator.
Słowa kluczowe
Rocznik
Strony
319--333
Opis fizyczny
Bibliogr. 24 poz., rys., tab., wz.
Twórcy
  • Department of Industrial Electrical Engineering and Automatic Control, Kielce University of Technology, 7 Tysiaclecia Panstwa Polskiego Ave., 25-314 Kielce, Poland
  • Faculty of Electrical Engineering, Czestochowa University of Technology 17 Armii Krajowej Ave., 42-200 Czestochowa, Poland
  • Department of Industrial Electrical Engineering and Automatic Control, Kielce University of Technology, 7 Tysiaclecia Panstwa Polskiego Ave., 25-314 Kielce, Poland
Bibliografia
  • [1] Xu D., Wang B., Zhang G., Wang G., Yu Y., A review of sensorless control methods for AC motor drives, CES Transactions on Electrical Machines and Systems, vol. 2, no. 1, pp. 104–115 (2018).
  • [2] Aiello M., Cataliotti A., Nuccio S., An induction motor speed measurement method based on current harmonic analysis with the chirp-Z transform, IEEE Transactions on Instrumentation and Measurement, vol. 54, no. 5, pp. 1811–1819 (2005).
  • [3] Zhao L., Huang J., Chen J., Ye M., A Parallel Speed and Rotor Time Constant Identification Scheme for Indirect Field Oriented Induction Motor Drives, IEEE Transactions on Power Electronics, vol. 31, no. 9, pp. 6494–6503 (2016).
  • [4] Joy M.T., Böeker J., Sensorless Control of Induction Motor Drives Using Additional Windings on the Stator, IEEE 9th International Symposium on Sensorless Control for Electrical Drives, Helsinki, Finland, pp. 162–167 (2018).
  • [5] Song X., Wang Z., Li S., Hu J., Sensorless Speed Estimation of an Inverter-Fed Induction Motor Using the Supply-Side Current, IEEE Transactions on Energy Conversion, vol. 34, no. 3, pp. 1432–1441 (2019).
  • [6] Schauder C., Adaptive speed identification for vector control of induction motors without rotational transducers, IEEE Transactions on Industry Applications, vol. 28, no. 5, pp. 1054–1061 (1992).
  • [7] Niestrój R., Białoń T., Pasko M., Stability analysis of the MRAS-type estimator taking into consideration parameter changes of the model of the induction motor (in Polish), Zeszyty Naukowe Politechniki Śląskiej, Elektryka, vol. 216, no. 4, pp. 39–53 (2010).
  • [8] Orłowska-Kowalska T., Dybkowski M., Stator-current-based MRAS estimator for a wide range speed-sensorless induction-motor drive, IEEE Transactions on Industrial Electronics, vol. 57, no. 4, pp. 1296–1308 (2010).
  • [9] Gadoue S.M., Giaouris D., Finch J.W., Stator current model reference adaptive systems speed estimator for regenerating-mode low-speed operation of sensorless induction motor drives, IET Electric Power Applications, vol. 7, no. 7, pp. 597–606 (2013).
  • [10] Zbede Y.B., Gadoue S.M., Atkinson D.J., Model Predictive MMRAS Estimator for Sensorless Induction Motor Drives, IEEE Transactions on Industrial Electronics, vol. 63, no. 6, pp. 3511–3521 (2016).
  • [11] Kumar R., Das S., Chattopadhyay A.K., Comparative assessment of two different model reference adaptive system schemes for speed-sensorless control of induction motor drives, IET Electric Power Applications, vol. 10, no. 2, pp. 141–154 (2016).
  • [12] Rolek J., Utrata G., Kaplon A., Improving robustness of the MRAS-based speed estimator to variability of induction motor electromagnetic parameters resulting from the rotor deep bar effect, 14th Selected Issues of Electrical Engineering and Electronics (WZEE 2018), Szczecin, Poland (2018).
  • [13] Das S., Kumar R., Pal A., MRAS-based speed estimation of induction motor drive utilizing machines’ dand q-circuit impedances, IEEE Transactions on Industrial Electronics, vol. 66, no. 6, pp. 4286–4295 (2019).
  • [14] Reddy C.U., Prabhakar K.K., Singh A.K., Kumar P., Speed Estimation Technique Using Modified Stator Current Error Based MRAS for Direct Torque Controlled Induction Motor Drives, IEEE Journal of Emerging and Selected Topics in Power Electronics (2019), DOI: 10.1109/JESTPE.2019.2901523.
  • [15] Marčetić D.P., Vukosavić S.N., Speed-sensorless AC drives with the rotor time constant parameter update, IEEE Transactions on Industrial Electronics, vol. 54, no. 5, pp. 2618–2625 (2007).
  • [16] Harnefors L., Hinkkanen M., Complete stability of reduced-order and full-order observers for sensorless IM drives, IEEE Transactions on Industrial Electronics, vol. 55, no. 3, pp. 1319–1329 (2008).
  • [17] Zaky M.S., Metwaly M.K., Azazi H.Z., Deraz S.A., A New Adaptive SMO for Speed Estimation of Sensorless Induction Motor Drives at Zero and Very Low Frequencies, IEEE Transactions on Industrial Electronics, vol. 65, no. 9, pp. 6901–6911 (2018).
  • [18] Chen J., Huang J., Stable Simultaneous Stator and Rotor Resistances Identification for Speed Sensorless IM Drives: Review and New Results, IEEE Transactions on Power Electronics, vol. 33, no. 10, pp. 8695–8709 (2018).
  • [19] Zerdali E., Barut M., The Comparisons of Optimized Extended Kalman Filters for Speed-Sensorless Control of Induction Motors, IEEE Transactions on Industrial Electronics, vol. 64, no. 6, pp. 4340–4351 (2017).
  • [20] Yin Z., Li G., Zhang Y., Liu J., Symmetric-Strong-Tracking-Extended-Kalman-Filter-Based Sensorless Control of Induction Motor Drives for Modeling Error Reduction, IEEE Transactions on Industrial Informatics, vol. 15, no. 2, pp. 650–662 (2019).
  • [21] Jansen P.L., Lorenz R.D., A physically insightful approach to the design and accuracy assessment of flux observers for field oriented induction machine drives, IEEE Transactions on Industry Applications, vol. 30, no. 1, pp. 101–110 (1994).
  • [22] Rolek J., Utrata G., An identification procedure of electromagnetic parameters for an induction motor equivalent circuit including rotor deep bar effect, Archives of Electrical Engineering, vol. 67, no. 2, pp. 279–291 (2018).
  • [23] Standard PN-EN 60034-28:2012, Rotating Electrical Machines – Part 28: Test methods for determining quantities of equivalent circuit diagrams for three-phase low-voltage cage induction motors (2012).
  • [24] IEEE Standard 112TM-2004, IEEE Standard Test Procedure for Polyphase Induction Motors and Generators (revision of IEEE Std 112-1996), IEEE Power Engineering Society, New York, USA (2004).
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4809747d-fd40-49ec-a780-66f19b845d06
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.