PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Thermoplastic hardened Cu-Ni-Si-Ag alloy

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper aims to investigate the influence of silver addition on the microstructure of CuNi2Si1 alloys. The investigated copper alloy was cast and then supersaturated, plastically deformed on the Gleeble 3800 simulator and finally aged. Structural changes were examined using optical microscopy, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Orientation mapping was completed with FEI Quanta 3D field emission gun scanning electron microscope (SEM) equipped with TSL electron backscattered diffraction (EBSD) system. The effect of structural and microstructural changes on hardness and conductivity was also investigated. Based on the mechanical tests it was found that the mechanical properties and conductivity are improved due to heat and plastic treatment. It was also found that the precipitation hardening raises the hardness to the level of 40% whilst an increase in conductivity by 20% is observed.
Rocznik
Strony
art. no. e145683
Opis fizyczny
Bibliogr. 33 poz., rys., tab.
Twórcy
  • Silesian University of Technology, Faculty of Mechanical Engineering, Department of Engineering Materials and Biomaterials, 44-100 Gliwice, Konarskiego St. 18a, Poland
  • Institute of Metallurgy and Materials Science of Polish Academy of Sciences, 30-059 Krakow, Reymonta St. 25, Poland
  • Silesian University of Technology, Faculty of Mechanical Engineering, Department of Foundry Engineering, 44-100 Gliwice, Konarskiego St. 18a, Poland
  • Silesian University of Technology, Faculty of Transport and Aviation Engineering, Department of Railway Transport, 44-100 Gliwice, Konarskiego St. 18a, Poland
Bibliografia
  • [1] T.J. Konno, R. Nishio, S. Semboshi, T. Ohsuna, and E. Okunishi, “Aging behavior of Cu–Ti–Al alloy observed by transmission electron microscopy,” J. Mater. Sci., vol. 43, pp. 3761–3768, 2008.
  • [2] S. Semboshi, T. Al-Kassab, R. Gemma, and R. Kirchheim, “Microstructural evolution of Cu–1 at% Ti alloy aged In a hydrogen atmosphere ant its relation with the electrical conductivity,” Ultramicroscopy, vol. 109, pp. 593–598, 2009.
  • [3] S. Semboshi, T. Nishida, and H. Numakura, “Microstructure and mechanical properties of Cu–3% at. Ti alloy aged in a hydrogen atmosphere,” Mater. Sci. Eng. A-Struct., vol. 517, pp. 105–113, 2009.
  • [4] D.P. Lu, J.Wang,W.J. Zeng, Y. Liu, L.Lu, and B.-D. Sun, “Study on high-strength and highconductivity Cu–Fe–P alloys,” Mater. Sci. Eng. A-Struct., vol. 421, pp. 254–259, 2006.
  • [5] D. Zhao, Q.M. Dong, P. Liu, B.X. Kang, J.L. Huang, and Z.H. Jin, “Aging behavior of Cu–Ni–Si alloy,” Mater. Sci. Eng. A-Struct., vol. 361, pp. 93–99, 2003.
  • [6] S. Nagarjuna and D.S. Sarma, “Effect of cobalt additions on the age hardening of Cu–4.5Ti alloy,” J. Mater. Sci., vol. 37, pp. 1929–1940, 2002.
  • [7] R. Markandeya, S. Nagarjuna, and D.S. Sarma, “Precipitation Hardening of Cu–3Ti–1Cd Alloy,” J. Mater. Eng. Perform., vol. 16, pp. 640–646, 2007.
  • [8] S. Thanga Kasi Rajan, A.N. Balaji, P. Narayanasamy and S.C. Vettivel, “Microstructural, electrical, thermal and tribological studies of copper fly ash composites through powder metallurgy,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 66, no. 6, pp. 935–940, 2018, doi: 10.24425/bpas.2018.125941.
  • [9] S. Nagarjuna, K. Balasubramanian, and D.S. Sarma, “Effect of Ti additions on the electrical resistivity of copper,” Mater. Sci. Eng., vol. 225, pp. 1118–1124, 1997.
  • [10] T. Radetic, V. Radmilovic, andW.A Soffa, “Electron microscopy observations of deformation twinning In a precipitation hardened copper-titanium alloy,” Scripta Mater., vol. 35, no. 12, pp. 1403–1409, 1996.
  • [11] T. Radetic, V. Radmilovic, andW.A Soffa, “Electron microscopy observations of twin-twin intersections In a particie hardened copper-titanium alloy,” Scripta Mater., vol. 40, no. 7, pp. 845–852, 1999.
  • [12] D.E. Laughlin and A.W. Soffa, “Spinodal Structures, Metals Handbook, Ninth Edition: Metallography and Microstructures,” Am. Soc. Met., vol. 9, pp. 652–654, 1985.
  • [13] J. Stobrawa and Z. Rdzawski, “The Structure of Coherent Chromium and Iron Precipitates in Aged Copper Alloys,” Works Inst. Non-Ferrous Met., vol. 9, pp. 221–224, 1980.
  • [14] J. Stobrawa, Z. Rdzawski, W. Głuchowski, and W. Malec, “Microstructure and properties of CuNi2Si1 alloy processed by continuous RCS method,” J. Achiev. Mater. Manuf. Eng., vol. 37, pp. 466–479, 2009.
  • [15] Z. Rdzawski and J. Stobrawa, “ Thermomechanical processing of CuNiSiCrMg alloy,” Mater. Sci. Technol. Vol. 9, pp. 142–149, 1993.
  • [16] Z. Rdzawski, “Copper Alloy”; Silesian University of Technology: Gliwice, Poland, 2009.
  • [17] B. Krupińska and Z. Rdzawski, “Effect of Re addition on the crystallization, heat treatment and structure of the Cu–Ni–Si–Cr alloy. J. Therm. Anal. Calorim., vol. 134, pp. 173–179, 2018, doi: 10.1007/s10973-018-7668-y.
  • [18] B. Krupińska, Z. Rdzawsk, M. Krupiński, and W. Pakieła, “Precipitation Strengthening of Cu–Ni–Si Alloy,” Materials, vol. 13, no. 5, p. 1182, 2020, doi: 10.3390/ma13051182.
  • [19] T. Knych, P. Kwaśniewski, and I.A. Kawecki, “Impact of supersaturation conditions of CuNi2Si alloy on its mechanical and electrical properties after artificial aging,” in Proceedings of the 37th School of Materials Engineering, Poland, 2009, pp. 135–138.
  • [20] B. Krupinska, W. Borek, M. Krupinski, and T. Karoszka, “The Influence of Ag on the Microstructure and Properties of Cu–Ni–Si Alloys,” Materials, vol. 15, no. 13, p. 3416, 2020, doi: 10.3390/ma13153416.
  • [21] W. Głuchowski, Z. Rdzawski, J. Sobota, and J. Domagała-Dubiel, “Effect of the Combined Heat Treatment and Severe Plastc Deformation on the Microstructure of CuNiSi Alloy,” Arch. Metall. Mater., vol. 61, no. 2, pp. 1207–1214, 2016.
  • [22] S. Tao, Z. Lu, H. Xie, H.J. Zhang, and X. Wei, “Effect of high contents of nickel and silicon on the microstructure and properties of Cu–Ni–Si alloys,” Mater. Res. Express, vol. 9, p. 046516, 2022, doi: 10.1088/2053-1591/ac64ec.
  • [23] S. Tao,; Z. Lu, H. Xie, H, J. Zhang and X. Wei, “Effect of preparation method and heat treatment on microstructure and properties of Cu–Ni–Si alloy,” Mater. Lett., vol. 315, 2022, doi: 10.1016/j.matlet.2022.131790.
  • [24] H. Fu, J. Li, and X. Yun, “Role of solidification texture on hot deformation behavior of a Cu–Ni–Si alloy with columnar grains,” Mater. Sci. Eng. A-Struct., vol. 824, p. 141862, 2021, doi: 10.1016/j.msea.2021.141862.
  • [25] Copper&Copper Alloys, Composition & Properties, Technical Note TN10, Copper Development Association Inc., 1986.
  • [26] L. Jia et al., “Microstructure evolution and reaction behavior of Cu–Ni–Si powder system under solid-state sintering,” Mater. Chem. Phys., vol. 271, p. 124942, 2021, doi: 10.1016/j.matchemphys.2021.124942.
  • [27] H. Wei, Y. Chen, Y. Zhao, W. Yu, L. Su, and D. Tang, “Correlation mechanism of grain orientation/microstructure and mechanical properties of Cu?Ni?Si?Co alloy,” Mater. Sci. Eng. A-Struct., vol. 814, p. 141239, 2021, doi: 10.1016/j.msea.2021.141239.
  • [28] C. Watanabe, S. Takeshita, and R. Monzen, “Effects of Small Addition of Ti on Strength and Microstructure of a Cu–Ni–Si Alloy,” Metall. Mater. Trans. A, vol. 46, pp. 2469–75, 2015.
  • [29] I.V. Alexandrov, M.V. Zhilina, and J.T. Bonarski, “Formation of texture inhomogeneity in severely plastically deformed Copper,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 54, no. 2, pp. 199–208, 2006.
  • [30] R.A.G. Silva, A. Paganotti, A.T. Adorno, C.M.A. Santos, and T.M. Carvalho, “Precipitation hardening in the Cu–11 wt.%Al–10 wt.%Mn alloy with Ag addition,” J. Alloy. Compd., vol. 643(S1), pp. S178–S181, 2015, doi: 10.1016/j.jallcom.2014.12.208.
  • [31] Y. Liu, S. Shao, K.M. Liu, X.J. Yang, and D.P. Lu, “Microstructure refinement mechanism of Cu–7Cr in situ composites with trace Ag,” Mater. Sci. Eng. A, 2012, 531, 141–146.
  • [32] Y. Zhang et al., “Deformation Behavior And Microstructure Evolution Of The Cu–2Ni–0.5Si–0.15Ag Alloy During Hot Compression,” Metall. Mater. Trans. A, vol. 46, pp. 5871–5876, 2015, doi: 10.1007/s11661-015-3150-7.
  • [33] M. Ellner, M.K. Bhargava, S. Heinrich, and K. Schubert, “Einige strukturelle untersuchungen in der mischung NiSiN,” J. Less-Common Met., vol. 66, pp. 163–173, 1979, doi: 10.1016/0022-5088(79)90226-1.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-480842b6-829f-4f16-aebd-335e618de9c6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.