Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Leonardite’s ability to stabilise marl, a challenging construction material, was confirmed through mechanical tests, including unconfined compressive strength, unconsolidated undrained triaxial tests, and chemical and microstructural analyses. Results confirmed that the strength improvement factor, cohesion improvement factor, and internal friction improvement factor significantly increased due to both the addition of Leonardite and the curing times. The addition of 15% Leonardite, along with curing periods of 7 to 14 days, resulted in considerable improvement factors ranging between 2 and 5, depending on the parameters investigated. Microstructural analysis confirmed that Leonardite could act as a filler, filling soil voids and reducing peaks associated with calcite content, which is responsible for the unfavorable behavior of marls. The formation of various functional groups and strong bands, such as carboxyl, hydroxyl, and carbonyl, as evidenced by FTIR analysis, was found to be responsible for improving the mechanical strength of samples containing Leonardite.
Wydawca
Czasopismo
Rocznik
Tom
Strony
493--504
Opis fizyczny
Bibliogr. 19 poz., rys., tab., wykr.
Twórcy
autor
- Karabük University Faculty of Engineering Civil Engineering Department, Turkey
autor
- Karabük University Faculty of Engineering Civil Engineering Department, Turkey
autor
- Department of Civil Engineering, Faculty of Engineering, Zand Institute of Higher Educati on, Shiraz, Iran
autor
- Karabük University Faculty of Engineering Civil Engineering Department, Turkey
autor
- Karabük University Faculty of Engineering Civil Engineering Department, Turkey
autor
- Department of Agricultural Trade and Management, Faculty of Economy and Administrative Science, Turkey
Bibliografia
- [1] A. Tajaddini, M. Saberian, V.K. Sirchi, J. Li, T. Maqsood, Improvement of mechanical strength of low-plasticityclay soil using geopolymer-based materials synthesized from glass powder and copper slag. (2022).DOI: https://doi.org/10.1016/j.cscm.2022.e01820.
- [2] P. Ghadir, N. Ranjbar, Clayey soil stabilization using geopolymer and Portland cement. (n.d.).DOI: https://doi.org/10.1016/j.conbuildmat.2018.07.207.
- [3] M. Salimi, M. Payan, I. Hosseinpour, M. Arabani, Z. Ranjbar, Effect of glass fiber (GF) on the mechanical properties and freeze-thaw (F-T) durability of lime-nanoclay (NC)-stabilized marl clayey soil. (2024).DOI: https://doi.org/10.1016/j.conbuildmat.2024.135227.
- [4] O. Saeed, B. Al-Amoudi, K. Khan, S. Al-Kahtani, Stabilization of a Saudi calcareous marl soil. (2010).DOI: https://doi.org/10.1016/j.conbuildmat.2010.04.019.
- [5] H. Bahadori, A. Hasheminezhad, S. Alizadeh, The Influence of Natural Pozzolans Structure on Marl Soil Stabilization. Transportation Infrastructure Geotechnology 7, 46-54 (2020).DOI: https://doi.org/10.1007/S40515-019-00089-4/figures/4.
- [6] H. Bahadori, A. Hasheminezhad, F. Taghizadeh, Experimental Study on Marl Soil Stabilization Using Natural Pozzolans. Journal of Materials in Civil Engineering 31, 04018363 (2018).DOI: https://doi.org/10.1061/(asce)mt.1943-5533.0002577.
- [7] M. Mirzababaei, J. Karimiazar, E.S. Teshnizi, R. Arjmandzadeh, S.H. Bahmani, Effect of Nano-Additives on the Strength and Durability Characteristics of Marl. Minerals 11, 1119 (2021).DOI: https://doi.org/10.3390/min11101119.
- [8] A. Ohadian, N. Khayat, M. Mokhberi, Microstructural analysis of marl stabilized with municipal solid waste andnano-MgO. Journal of Rock Mechanics and Geotechnical Engineering (2024).DOI: https://doi.org/10.1016/j.jrmge.2023.09.038.
- [9] U. Zada, A. Jamal, S.M. Eldin, M. Almoshaogeh, S. Rehab Bekkouche, Case study Recent advances in expansives oil stabilization using admixtures: current challenges and opportunities. Case Studies in Construction Materials (2023). DOI: https://doi.org/10.1016/j.cscm.2023.e01985.
- [10] A. Angkaew, C. Chokejaroenrat, M. Angkaew, T. Satapanajaru, C. Sakulthaew, Persulfate activation using leonarditechar-supported nano zero-valent iron composites for styrene-contaminated soil and water remediation. Environ. Res. 240, 117486 (2024). DOI: https://doi.org/10.1016/j.envres.2023.117486.
- [11] I. Keskin, O. Arslan, A. Hossein Vakili, Investigating the impact of travertine powder on strength and permeability of swelling clay. Physics and Chemistry of the Earth 132, 1474-7065 (2023).DOI: https://doi.org/10.1016/j.pce.2023.103494.
- [12] A. Hossein Vakili, M. Salimi, I. Keskin, Mohammed, S.S. Abujazar, Mohammad Shamsi, Effects of polyvinylacetate content on contact erosion parameters of pavement embankment constructed by dispersive soils. Bulletin of Engineering Geology and the Environment 82, 398 (2023). DOI: https://doi.org/10.1007/s10064-023-03416-9.
- [13] J.J.A. Baldovino, R.L.S. Izzo, J.L. Rose, M.D.I. Domingos, Strength, durability, and microstructure of geopolymers based on recycled-glass powder waste and dolomitic lime for soil stabilization. (n.d.).DOI: https://doi.org/10.1016/j.conbuildmat.2020.121874.
- [14] M. Salimi, M. Payan, I. Hosseinpour, M. Arabani, Z. Ranjbar, Impact of clay nano-material and glass fiber on the efficacy of traditional soil stabilization technique. (2024). DOI: https://doi.org/10.1016/j.matlet.2024.136046.
- [15] C.J. Medina-Martinez, L.C. Sandoval-Herazo, S.A. Zamora-Castro, R. Vivar-Ocampo, D. Reyes-Gonzalez, Natural Fibers: An Alternative for the Reinforcement of Expansive Soils. Sustainability 14, 9275 (2022).DOI: https://doi.org/10.3390/su14159275.
- [16] İ. Keskin, S. Kahraman, Stabilization of swelling soil by lime, fly ash, and calcium carbide residue. Arabian Journal of Geosciences 1, 3 (2022). DOI: https://doi.org/10.1007/s12517-022-10291-3.
- [17] Y. Liu, C. Cao, Q. Wang, W. Zheng, J. Shen, Y. Chen, F. Gu, M. Han, I. Rocchi, Utilization of bioethanol industry recycled waste for sustainable soil improvement: A win-win application. Eng. Geol. 289, 106192 (2021).DOI: https://doi.org/10.1016/j.enggeo.2021.106192.
- [18] D. ASTM, Standard Test Method for Unconfined Compressive Strength of Cohesive Soil. ASTM International, West Conshohocken, Pennsylvania, U.S.A. ASTM D2166/D2166M-16, 2016.
- [19] S. Xue, Y. Hu, K. Wan, Z. Miao, Exploring Humic Acid as an Efficient and Selective Adsorbent for Lead Removalin Multi-Metal Coexistence Systems: A Review. Separations 11, 80 (2024).DOI: https://doi.org/10.3390/separations11030080.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-48079298-5bd6-4b3b-968a-670c9b46bc73
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.