PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Physiological and Biochemical Changes Induced by UV-B Radiation in Rosemary Plants Grown Under Salinity Stress

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Plants are exposed to solar ultraviolet radiation due to use of sunlight for photosynthesis. Additionally, salinity in soil or water influences the plant productivity and quality considerably. Moreover, when plants are simultaneously exposed to multiple stresses, one form of stress can affect the response to other stress. Particularly, it has been shown that they can benefit from dual tolerance as salinity and UV-B radiation are applied together. In order to understand the effects of UV-B radiation and salinity stress on some physiological and biochemical parameters, one-year-old cuttings of rosemary plants were grown under different levels of ultraviolet B radiation (0, 4.32 and 6.05 kJ m-2 d-1) and salinity stress (control, 50, 100 and 150 mM NaCl). The results showed that 4.32 kJ m-2 d-1 UV-B treatment significantly increased plant biomass up to 17.9% as compared to control. However, by increasing salinity to 150 mM, plant biomass significantly decreased up to 18.1%, as compared to control. Regardless of UV-B treatments, plants, grown under 100 mM salinity stress, had produced 2.8 times higher total phenolic compounds (TPC) and also have greater antioxidant activity (33.1%) in comparison to control. Both treatments, enhanced UV-B radiation and salinity stress, significantly increased the concentration of proline, hydrogen peroxide (H2O2) and malondealdehyde (MDA). In relation of total soluble sugar (TSS) and ion content, both treatments acted in an opposing manner. In turn, the enhanced UV-B radiation decreased concentration of TSS and the Na+ content in leaves, salinity stress increased the concentration of TSS, as well as the Na+ content in leaves and root. The plants grown under 150 mM salinity level accumulated 5.32 and 2.83 times higher Na+ ions in leaves and roots, respectively, than control. In addition, salinity significantly decreased the relative water content (RWC), photosynthetic pigments and K+ content in leaves and roots. The interaction between UV-B irradiation and salinity showed that the UV-B radiation improved the K+ content in leaves, RWC and membrane stability and consequently resulted in a better tolerance of rosemary to salinity.
Rocznik
Strony
217--228
Opis fizyczny
Bibliogr. 76 poz., rys., tab.
Twórcy
  • Department of Horticulture and Landscape Engineering, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
  • Department of Horticulture and Landscape Engineering, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
  • Department of Crop Biotechnology and Breeding, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
autor
  • Department of Horticulture and Landscape Engineering, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
  • Department of Horticulture and Landscape Engineering, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
  • Research institute of Forests and Rangelands, Tehran, Iran
Bibliografia
  • 1. Acosta-Motos J.R. Ortuño M.F. Bernal-Vicente A. Diaz-Vivancos P. Sanchez-Blanco M.J. Hernandez J.A. 2017. Plant Responses to Salt Stress: Adaptive Mechanisms. Agronomy. 7 (1), 18.
  • 2. Agrawal S.B. Rathore D. 2007. Changes in oxidative stress defense system in wheat (Triticum aestivum L.) and mung bean (Vigna radiate L.) cultivars grown with and without mineral nutrients and irradiated by supplemental Ultraviolet-B. Environmental and Experimental Botany. 59: 21-23.
  • 3. Aksakal O. Tabay D. Esringu A. Aksakal F.L. Esim N. 2017. Effect of proline on biochemical and molecular mechanisms in lettuce (Lactuca sativa L.) exposed to UV-B radiation. Photochemichal and. Photobiological. Sciences, 16: 246–254.
  • 4. Alam Md.A. Juraimi A.S. Rafii M.Y. Hamid A.A. Aslani F. Alam M.Z. 2015. Effects of salinity and salinity-induced augmented bioactive compounds in purslane (Portulaca oleracea L.) for possible economical use. Food Chemistry, 169: 439–447.
  • 5. Alarcón J.J. Morales M.A. Ferrández T. SánchezBlanco M.J. 2006. Effects of water and salt stresses on growth, water relations and gas exchange in Rosmarinus officinalis. Journal of Horticultural Science and Biotechnology. 81: 845–853.
  • 6. Alexieva V. Sergiev I. Mapelli S. Karanov E. 2001. The effect of drought and ultraviolet radiation on growth and stress markers in pea and wheat. Plant Cell and Environment, 24: 1337-1344
  • 7. Araújo M. Santos C. Costa M. Moutinho-Pereira J. Correia C. Dias M.C. 2016. Plasticity of young Moringa oleifera L. plants to face water deficit and UVB radiation challenges. Journal of Photochemistry & Photobiology, B: Biology, 162: 278–285.
  • 8. Azza Mazher A.M. El-Quesni E.M.F. Farahat M.M. 2007. Responses of ornamental plants and woody trees to salinity. World Journal of Agricultural Sciences, 3: 386–395.
  • 9. Balouchi H.R. Sanavy S.A.M.M. Emam Y. Dolatabadian A. 2009. UV radiation, elevated CO2 and water stress effect on growth and photosynthetic characteristics in durum wheat. Plant Soil Environmental, 55 (10): 443–453.
  • 10. Bates I.S. Waldern R.P. Tear I.D. 1973. Rapid determination of free praline for water stress studies. Plant and Soil. 39: 205-207.
  • 11. Bernal M. Llorens L. Badosa J. Verdaguer D. 2013. Interactive effects of UV radiation and water availability on seedlings of six woody Mediterranean species. Physiologia Plantarum, 147: 234–247.
  • 12. Bernal M. Verdaguer D. Badosa J. Abadía A. Lluisa J. Penuelas J. Núñez-Olivera E. Llorens L. 2015. Effects of enhanced UV radiation and water availability on performance, biomass production and photoprotective mechanisms of Laurus nobilis seedlings. Environmental and Experimental Botany, 109: 264–245.
  • 13. Correia C.M. Coutinho J.F. Bacelar E.A. Gonçalves B.M. Björn L. Pereira J.M. 2012. Ultraviolet-B radiation and nitrogen affect nutrient concentrations and the amount of nutrients acquired by aboveground organs of maize. The Scientific World Journal. 2012, 1-11.
  • 14. Eichholz I. Huyskens-Keil S. Keller A. Ulrich D. Kroh L W. Rohn S. 2011. UV-B-induced changes of volatile metabolites and phenolic compounds in blueberries (Vaccinium corymbosum L.). Food Chemistry, 126: 60–64.
  • 15. El-Esawi M.A. Elansary H.O. El-Shanhorey N.A. Abdel-Hamid A M.E. Ali H.M. Elshikh M.S. 2017. Salicylic Acid-regulated antioxidant mechanisms and gene expression enhance rosemary performance under saline conditions. Frontiers in Physiology, 8:716.
  • 16. Garcı´a-Caparros P. Llanderal A. Pestana M. Correia P.J. Lao M.T. 2017. Lavandula multifida response to salinity: Growth, nutrient uptake, and physiological changes. Journal of Plant Nutrient and Soil Science, 180: 96–104.
  • 17. Giorgi A. Mingozzi M. Madeo M. Speranza G. Cocucci M. 2009. Effect of nitrogen starvation on the phenolic metabolism and antioxidant properties of yarrow (Achillea collina Becker ex Rchb.). Food Chemistry, 114: 204–211.
  • 18. Guo X.R. Chang B.W. Zu Y.G. Tang Z.H. 2014. The impacts of increased nitrate supply on Catharanthus roseus growth and alkaloid accumulations under ultraviolet-B stress. Journal of Plant Interactions, 9 (1): 640-646.
  • 19. Gupta B. Huang B. 2014. Mechanism of Salinity Tolerance in Plants: Physiological, Biochemical, and Molecular Characterization. International Journal of Genomics. ID 701596.1-18.
  • 20. Hamidi-Moghaddam A. Arouiee H. Moshtaghi N. Azizi M. shoor M. Sefidkon F. 2019. Visual Quality and Morphological Responses of Rosemary Plants to UV-B Radiation and Salinity Stress. Journal of Ecological Engineering, 20 (2): 34-43.
  • 21. Hanato T. Kagawa H. Yasuhara T. Okuda T. 1988. Two new flavonoids and other constituents in licorice root: their relative astringency and radical scavenging effects. Chemical and Pharmaceutical Bulletin, 36: 2090-2097.
  • 22. Hasanuzzaman M. Nahar K. Fujita M. 2013. Plant Response to Salt Stress and Role of Exogenous Protectants to Mitigate Salt-Induced Damages. In: Ahmad P. Azooz M.M. Prasad M.N.V. (eds) Ecophysiology and Responses of Plants under Salt Stress. Springer, New York, Heidelberg, Dordrecht, London.
  • 23. Heath R.L. Packer L. 1968. Photoperoxidation in isolated chloroplast. I. Kinetics and stoichiometry of fatty acid peroxidation. Archives in Biochemistry and biophysics. 125:189-198.
  • 24. Heidari M. 2012. Effects of salinity stress on growth, chlorophyll content and osmotic components of two basil (Ocimum basilicum L.) genotypes. African Journal Biotechnology, 11: 379–384.
  • 25. Hejazi Mehrizi M. Shariatmadari H. Khoshgoftarmanesh A.H. Dehghani F. 2012. Copper Effects on growth, lipid peroxidation, and total phenolic content of rosemary leaves under salinity stress. Journal of Agriculture Science and Technology. 14: 205-212.
  • 26. Hejazi Mehrizi M. Shariatmadari H. Khoshgoftarmanesh A.H. Moattar F. 2011. Effects of salinity and zinc nutrition on growth and antioxidant properties of Rosmarinus officinalis L. in a calcareous soil. Iranian Journal of Medicinal and Aromatic Plants, 27 (1): 25-35.
  • 27. Interdonato R. Rosa M. Nieva C.B. Gonzalez J A. Hilal M. Prado F.E. 2011. Effects of low UV-B doses on the accumulation of UV-B absorbing compounds and total phenolics and carbohydrate metabolism in the peel of harvested lemons Environ. Environmental and Experimental Botany, 70: 204–211.
  • 28. Javadmanesh S. Rahmani F. Pourakbar L. 2012. UV-B Radiation, Soil Salinity, Drought Stress and Their Concurrent Effects on Some Physiological Parameters in Mize Plant. American-Eurasian Journal of Toxicological Sciences, 4 (4): 154-164.
  • 29. Kakani V.G. Reddy K.R. Zhao D. Sailaja K. 2003. Field crop response to ultraviolet-B radiation: a review. Agricultural and Forest Meteorology, 120: 191-218.
  • 30. Kalra P.Y. 1998. Handbook of reference methods for plant analysis. CRC press.
  • 31. Karima H. Salama A. 2009. Amelioration of NaClinduced alterations on the plasma membrane of Allium cepa L. by Ascorbic Acid. Australian Journal of Basic and Applied Sciences. 3: 990-994.
  • 32. Kiarostami K. Mohseni R. Saboora A. 2010. Biochemical changes of Rosmarinus officinalis under salt stress. Journal of Stress Physiology & Biochemistry. 6: 114-122.
  • 33. Kovtun Y. Chiu W-L. Tena G. Sheen J. 2000. Functional analysis of oxidative stress-activated mitogen-activated protein kinase cascade in plants. Proceedings of the National Academy of Sciences, USA, 97: 2940–2945.
  • 34. Lichtenthaler K.H. 1994. Chlorophyll and carotenoids pigments of photosynthetic biomembrances. Methods in Enzymology. 148: 350–382.
  • 35. Luis J.C. Martin Perez R. Valdes Gonzalez F. 2007. UV-B radiation effects on foliar concentrations of rosmarinic and carnosic acids in rosemary plants. Food Chemistry. 101: 1211–1215.
  • 36. Mahajan S. Tuteja N. 2005. Cold, salinity and drought stresses: an overview. Archives of Biochemistry and Biophysics. 444:139–158.
  • 37. Manchanda G. Garg N. 2008. Salinity and its effects on the functional biology of legumes. Acta Physiologiae Plantarum, 30: 595–618.
  • 38. Manetas Y. Petropoulou Y. Stamatakis K. Nikopoulos D. Levizou E. Psaras G. Karabourniotis G. 1997. Beneficial effects of enhanced UV-B radiation under field conditions: improvement of needle water relations and survival capacity of Pinus pinea. Plant Ecology, 128: 101–108.
  • 39. Marwood C.A. Greenberg B.M. 1996. Effect of Supplementary UVB Radiation on Chlorophyll Synthesis and Accumulation of Photosystems during Chloroplast Development in Spirodela oligorrhiza. Photochemistry and Photobiology. 64 (4): 664-670.
  • 40. Mateu-Andrés I. Aguilella A. Boisset F. Currás R. Guara M. Laguna E. Marzo A. Puche M.F. Pedrola J. 2013. Geographical patterns of genetic variation in rosemary (Rosmarinus officinalis) in the Mediterranean basin. Botanical Journal of the Linnean Society. 171: 700–712.
  • 41. McKenzie R.L. Aucamp P.J. Bais A.F. Bjorn L.O. lIyas M. Madronichg S. 2011 Ozone depletion and climate change: impacts on UV radiation. Photochemical and Photobiological Sciences. 10: 182-198.
  • 42. Miller G. Suzuki N. Ciftci-Yilmaz S. Mittler R. 2010. Reactive oxygen species homeostasis and signaling during drought and salinity stresses. Plant, Cell and Environment. 33: 453–467.
  • 43. Mishra V. Srivastava G. Prasad S.M. Abraham G. 2008. Growth, photosynthetic pigments and photosynthetic activity during seedling stage of cowpea (Vigna unguiculata) in response to UV-B and dimethoate. Pesticide Biochemistry and Physiology. 92: 30–37.
  • 44. Nahrjoo M. Sedaghathoor S. 2018. The Induction of Salinity Stress Resistance in Rosemary as Influenced by Salicylic Acid and Jasmonic Acid. Communications in Soil Science and Plant Analysis. 49 (14):1761-1773.
  • 45. Neill S.J. Desikan R. Clarke A. Hurst R.D. Hancock J.T. 2002. Hydrogen peroxide and nitric oxide as signalling molecules in plants. Environmental and Experimental Botany. 53 (372): 1237–1247.
  • 46. Pessarakli M. 2010. Handbook of Plant and Crop Stress. Third Edition. CRC Press.
  • 47. Radyukina N.L. Shashukova A.V. Makarova S.S. Kuznetsov V.V. 2011. Exogenous Proline Modifies Differential Expression of Superoxide Dismutase Genes in UV-B - Irradiated Salvia officinalis Plants. Russian Journal of Plant Physiology. 58 (1): 51-59.
  • 48. Rai R. Meena R.P. Smita S.S. Shukla A. Rai S.K. Pandey-Rai S. 2011. UV-B and UV-C pre-treatments induce physiological changes and artemisinin biosynthesis in Artemisia annua L. – An antimalarial plant. Journal of Photochemistry and Photobiology B: Biology. 105: 216-225.
  • 49. Rao M.V. Paliyath G. Ormrod D.P. 1996. Ultraviolet-Band ozone-induced biochemical changes in antioxidant enzymes of Arabidopsis thaliana. Plant Physiology. 110: 125–136.
  • 50. Reboredo F. Lidon F.J.C. 2012. UV-B radiation effects on terrestrial plants A perspective. Emirates Journal of Food and Agriculture. 24 (6): 502-209.
  • 51. Reddy M.P. Vora A.B. 1986. Changes in pigment composition, hill reaction activity and saccharides metabolism in bajra (Pennisetum typhoides S&H) leaves under NaCl salinity. Photosynthica. 20: 50-55.
  • 52. Ritchie S.W. Nguyen H.T. Halody A.S. 1990. Leaf water content and gas exchange parameters of two wheat genotypes differing in drought resistance. Crop Sciences. 30: 105-111.
  • 53. Rosa M. Prado C. Podazza G. Interdonato R. Gonzalez J.A. Hilal M. Prado F.E. 2009. Soluble sugars-Metabolism, sensing and abiotic stress. Plant Signaling & Behavior. 4 (5): 388-393.
  • 54. Sadia B. Irfan S. Bazai Z.A. 2016. Chemical composition of rosemary (Rosmarinus officinalis L.) leaves under salt stress. Pure and Applied Biology. 5(2): 355-360.
  • 55. Saeed R. Mirza S. Ahmad R. 2014. Electrolyte leakage and relative water content as affected by organic mulch in okra plant (Abelmoschus esculentus (L.) moench) grown under salinity. Fuuast Journal of Biology. 4 (2): 221-227.
  • 56. Saied A.S. Keutgen A.J. Noga G. 2005. The influence of NaCl Salinity on Growth, Yield and Fruit Quality of Strawberry cvs. ‘Elsanta’and ‘Korona’. Scientia Horticulturea. 103: 289–303.
  • 57. Sakalauskaite J. Viskelis P. Dambrauskiene E. Sakalauskiene S. Samuoliene G. Brazaityte A. Duchovskis P. Urbonaviciene D. 2013. The Effects of Different UV-B Radiation Intensities on Morphological and Biochemical Characteristics in Ocimum basilicum L. Journal of the Science of Food and Agriculture. 93: 1266-1271.
  • 58. Saradhi P.P. Alia Arora S. Prasad K.V.S.K. 1995 Proline accumulates in plants exposed to UV radiation and protects them against UV induced peroxidation. Biochemical and Biophysical Research Communications. 209: 1–5.
  • 59. Schreiner M. Mewis I. Huyskens-Keil S. Jansen M A.K. Zrenner R. Winkler J.B. O’Brien N. Krumbein A. 2012. UV-B-Induced Secondary Plant Metabolites Potential Benefits for Plant and Human Health. Critical Reviews in Plant Sciences. 31 (3): 229-240.
  • 60. Shen X. Dong Z. Chen Y. 2015. Drought and UV-B radiation effect on photosynthesis and antioxidant parameters in soybean and maize. Acta Physiologiae Plantarum. 37: 25.
  • 61. Singleton V.L. Orthofer R. Lamuela-Raventos R M. 1999. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin–Ciocalteu reagent. Methods in Enzymology. 299: 152–178.
  • 62. Surjadinata B B. Jacobo-Velázquez D A. CisnerosZevallos L. 2017. UVA, UVB and UVC Light Enhances the Biosynthesis of Phenolic Antioxidants in Fresh-Cut Carrot through a Synergistic Effect with Wounding. Molecules. 22, 668; doi:10.3390/molecules22040668.
  • 63. Takshak S. Agrawal S.B. 2014. Effect of ultraviolet-B radiation on biomass production, lipid peroxidation, reactive oxygen species, and antioxidants in Withania somnifera. Biologia Plantarum. 58 (2): 328-334.
  • 64. Tanaka H. Yamada S. Masunaga T. Yamamoto S. Tsuji W. Murillo-Amador B. 2018. Comparison of nutrient uptake and antioxidative response among four Labiatae herb species under salt stress condition. Soil Science and Plant Nutrition. DOI: 10.1080/00380768.2018.1492334.
  • 65. Tanou G. Molassiotis A. Diamantidis G. 2009. Induction of reactive oxygen species and necrotic deathlike destruction in strawberry leaves by salinity. Environmental and Experimental Botany. 65: 270–281.
  • 66. Tounekti T. Vadel A.M. Bedoui A. Khemira H. 2008. NaCl stress affects growth and essential oil composition in rosemary (Rosmarinus officinalis L.). Journal of Horticultural Science & Biotechnology. 83: 267–273.
  • 67. Tounekti T. Vadel A.M. Ennajeh M. Khemira H. Munné-Bosch S. 2011a. Ionic interactions and salinity affect monoterpene and phenolic diterpene composition in rosemary (Rosmarinus officinalis). Journal of Plant Nutrition and Soil Science. 174: 504–514.
  • 68. Tounekti T. Vadel A.M. Onate N. Khemira H. Munné-Bosch S. 2011b. Salt-induced oxidative stress in rosemary plants: Damage or protection?. Environmental and Experimental Botany. 71: 298–305.
  • 69. Tsurunaga Y. Takahashi T. Katsube T. Kudo A.K. Kuramitsu O. Ishiwata M. Matsumoto S. 2013. Effects of UV-B irradiation on the levels of anthocyanin, rutin and radical scavenging activity of buckwheat sprouts. Food Chemistry. 141: 552–556.
  • 70. Tuna A.L. Kaya C. Ashraf M. Altunlu H. Yokas I. Yagmur B. 2007. The effects of calcium sulphate on growth, membrane stability and nutrient uptake of tomato plants grown under salt stress. Environmental and Experimental Botany. 59: 173–178.
  • 71. Valifard M. Mohsenzadeh S. Niazi A. Moghadam A. 2015. Phenylalanine ammonia lyase isolation and functional analysis of phenylpropanoid pathway under salinity stress in ‘Salvia’ species. Australian Journal of Crop Science. 9 (7): 656-665.
  • 72. Varshney K.A. Shukla A. Krishna V. Singh N B. 2013. Hydrogen Peroxide as A Signal Upstream Improving Salinity Tolerance in Alfalfa Plants. Indian Journal of Scientific Reseearh. 4 (2): 151-153.
  • 73. Wang Y. Li X. Li J. Bao Q. Zhang F. Tulaxi G. Wang Z. 2016. Salt-induced hydrogen peroxide is involved in modulation of antioxidant enzymes in cotton. The Crop Journal. 4: 490-498.
  • 74. Wardlaw I.F. Willenbrink J. 1994. Carbohydrate storage and mobilization by the culm of wheat between heading and grain maturity: the relation to sucrose synthase and sucrosephosphate synthase. Australian Journal of Plant Physiology. 21: 255-271.
  • 75. Yue M. Li Y. Wang X. 1998. Effects of enhanced ultraviolet-B radiation on plant nutrients and decomposition of spring wheat under field conditions. Environmental and Experimental Botany. 40: 187–196.
  • 76. Zhang X.R. Chen Y.H. Guo Q.S. Wang W.M. Liu L. Fan J. Cao L.P. Li C. 2017. Short-term UV-B radiation effects on morphology, physiological traits and accumulation of bioactive compounds in Prunella vulgaris L., Journal of Plant Interactions. 12 (1): 348-354.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4803eb63-0bef-4c3f-a282-b3d15726b6db
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.