PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Utilization of spent dregs for the production of activated carbon for CO2 adsorption

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The objective of this work was preparation of activated carbon from spent dregs for carbon dioxide adsorption. A saturated solution of KOH was used as an activating agent. Samples were carbonized in the furnace at the temperature of 550°C. Textural properties of activated carbons were obtained based on the adsorption-desorption isotherms of nitrogen at −196°C and carbon dioxide at 0°C. The specific surface areas of activated carbons were calculated by the Brunauer – Emmett – Teller equation. The volumes of micropores were obtained by density functional theory method. The highest CO2  adsorption was 9.54 mmol/cm3  at 0°C – and 8.50 mmol/cm3  at 25°C.
Słowa kluczowe
Rocznik
Strony
44--50
Opis fizyczny
Bibliogr. 89 poz., rys., tab.
Twórcy
autor
  • West Pomeranian University of Technology, Szczecin, Faculty of Chemical Technology and Engineering, Institute of Inorganic Chemical Technology and Environment Engineering, Pulaskiego 10, 70-322Szczecin, Poland
Bibliografia
  • 1. Working Group and Contribution to the IPCC Fifth Assessment Report (2013). Climate Change 2013: The Physical Science Basis, Final Draft Underlying Scientific-Technical Assessment, Chapter 2: Observations: Atmosphere and Surface – Final Draft Underlying Scientific-Technical Assessment, Stockholm, Sweden.
  • 2. Siemiątkowski, G. (2013). Emisja antropogenicznych gazów cieplarnianych i ich wpływ na efekt cieplarniany. Sci. Works Inst. Ceram. Buil. Mater. 15, 81–90.
  • 3. Figueroa, D.J., Fout, T., Plasynski, S., McLlvried, H. & Srivastava, D.R. (2008). Advance in CO2 capture technology- The U.S. Department of Energy’s Carbon Sequestration Program. Int. J. Greenh. Gas Control 2, 9–20. DOI: 10.1016/S1750-5836(07)00094-1.
  • 4. Yang, H., Xu, Z., Fan, M., Gupta, R., Slimane, B.R., Bland, E.A. & Wright, I. (2008). Progress in carbon dioxide separation and capture: a review. J. Environ. Sci. (China), 20, 14–27. DOI: 10.1016/S1001-0742(08)60002-9.
  • 5. Sevilla, M. & Fuertes, A.B. (2011). Sustainable porous carbons with a superior performance for CO2 capture. Ener. & Environ. Sci. 4(5), 1765–1771. DOI: 10.1039/C0EE00784F
  • 6. Vargas, D.P., Giraldo, L. & Moreno-Piraján, J.C. (2013). Study of CO2 adsorption in functionalized carbon. Adsorption 19(2–4), 323–329. DOI: 10.1007/s10450-012-9454-7.
  • 7. Djeridi, W., Ouederni, A., Mansour, N.B., Llewellyn, P.L., Alyamani, A. & El, M. (2016). Effect of the both texture and electrical properties of activated carbon on the CO2 adsorption capacity. Mater. Res. Bull. 73, 130–139. DOI: 10.1016/j.materresbull.2015.08.032
  • 8. Olkuski, T. (2015). Wpływ handlu uprawnieniami do emisji CO2 w Unii Europejskiej na przeciwdziałanie zmianom klimatu. Pol. Energ. 18, 87–97.
  • 9. Srenscek-Nazzal, J., Narkiewicz, U., Morawski, A.W., Wrobel, R.J. & Michalkiewicz, B. (2015). Comparison of Optimized Isotherm Models and Error Functions for Carbon Dioxide Adsorption on Activated Carbon. J. Chem. Eng. Data, 60, 3148–3158. DOI: 10.1021/acs.jced.5b00294.
  • 10. Srenscek-Nazzal, J., Narkiewicz, U., Morawski, A.W., Wrobel, R., Gesikiewicz-Puchalska, A. & Michalkiewicz, B. (2015). Modification of Commercial Activated Carbons for CO2 Adsorption. Acta Phys. Pol. A. 129, 394–401. DOI: 10.12693/APhysPolA.129.394.
  • 11. Gesikiewicz-Puchalska, A., Zgrzebnicki, M., Michalkiewicz, B., Narkiewicz, U., Morawski, A.W. & Wrobel, R.J. (2017). Improvement of CO2 uptake of activated carbons by treatment with mineral acids. Chem. Eng. J. 309, 159–171. DOI: 10.1016/j.cej.2016.10.005.
  • 12. Mlodzik, J., Srenscek-Nazzal, J., Narkiewicz, U., Morawski, A.W., Wrobel, R.J. & Michalkiewicz, B. (2016). Activated Carbons from Molasses as CO2 Sorbents. Acta Phys. Pol. A, 129, 402–404. DOI: 10.12693/APhysPolA.129.402.
  • 13. Srenscek-Nazzal, J. & Michalkiewicz, B. (2011). The simplex optimization for high porous carbons preparation. Pol. J. Chem. Technol. 13, 63–70. DOI: 10.2478/v10026-011-0051-4.
  • 14. Glonek, K., Srenscek-Nazzal, J., Narkiewicz, U., Morawski, A.W., Wrobel, R.J. &Michalkiewicz, B. (2016). Preparation of Activated Carbon from Beet Molasses and TiO2 as the Adsorption of CO2. Acta Phys. Pol. A. 129, 158–161. DOI: 10.12693/APhysPolA.129.158.
  • 15. Gong, Jiang, Michalkiewicz, B., Chen, X., Mijowska, E., Liu, J., Jiang, Z., Wen, X. & Tang, T. (2014). Sustainable Conversion of Mixed Plastics into Porous Carbon Nanosheets with High Performances in Uptake of Carbon Dioxide and Storage of Hydrogen. Acs Sustain. Chem. & Engine. 2, 2837–2844. DOI: 10.1021/sc500603h.
  • 16. Araki, S., Kiyohara, Y., Tanaka, S. & Miyake, Y. (2012). Adsorption of carbon dioxide and nitrogen on zeolite rho prepared by hydrothermal synthesis using 18-crown-6 ether. J. Coll. Inter. Sci. 388, 185–190. DOI: 10.1016/j.jcis.2012.06.061.
  • 17. Akhtar, F., Liu, Q.L., Hedinab, N. & Bergstrom, L. (2012). Strong and binder free structured zeolite sorbents with very high CO2-over-N2 selectivities and high capacities to adsorb CO2 rapidly. Energy Environ. Sci. 5, 7664–7676. DOI: 10.1039/C2EE21153J.
  • 18. Palomino, M., Corma A., J., Jorda, L., Rey, F. & Valencia, S. (2012). Zeolite Rho: a highly selective adsorbent for CO2/CH4 separation induced by a structural phase modification. Chem. Commun. 48, 215–217. DOI: 10.1039/c1cc16320e.
  • 19. Zhang, J., Sun, L., Xu, F., Li, F., Zhou, H.Y., Huang, F.L., Gabelica, Z. & Schick, C. (2012). Hydrogen storage and selective carbon dioxide capture in a new chromium(III)-based infinite coordination polymer. Rsc. Adv. 2(7), 2939–2945. DOI: 10.1039/C2RA01188C.
  • 20. Li, B., Zhang, Z., Li, Y., Yao, K., Zhu, Y., Deng, Z., Yang, F., Zhou, X., Li, G., Wu, H., Nijem, N., Chabal, Y.J., Lai, Z., Han, Y., Shi, Z., Feng, S., Li, J. & Angew K. (2012). Enhanced binding affinity, remarkable selectivity, and high capacity of CO2 by dual functionalization of a rht-type metalorganic framework. Chem., Int. Ed. 51, 1412–1415. DOI:10.1002/anie.201105966.
  • 21. Debatin, F., Mollmer, J., Mondal, S.S., Behrens, K., Möller, A., Staudt, R., Thomas, A. & Holdt, H.J. (2012). White light emission of IFP-1 by in situ co-doping of the MOF pore system with Eu3+ and Tb3+. J. Mater. Chem. 22, 4623–4631. DOI: 10.1039/c4tc02919d.
  • 22. Chen, Q., Luo, M., Hammershøj, P., Zhou, D., Han, Y., Laursen, B.W., Yan, C.G., Han, B.H. (2012). Microporous Polycarbazole with High Specific Surface Area for Gas Storage and Separation. J. Am. Chem. Soc. 134, 6084–6087. DOI: 10.1021/ja300438w.
  • 23. Luo, Y., Li, B., Wang, W., Wu, K. & Tan, B. (2012). Hypercrosslinked Aromatic Heterocyclic Microporous Polymers: A New Class of Highly Selective CO2 Capturing Materials. Adv. Mater. 24, 5703–5707. DOI: 10.1002/adma.201202447.
  • 24. Pei C., Ben, T., Cui, Y. & Qiu, S. (2012). Storage of hydrogen, methane, carbon dioxide in electron-rich porous aromatic framework (JUC-Z2). Adsorption 18, 375–380. DOI: 10.1007/s10450-012-9416-0.
  • 25. Kapica-Kozar, J., Pirog, E., Wrobel, R.J., Mozia, S., Kusiak-Nejman, E., Morawski, A.W., Narkiewicz, U. & Michalkiewicz, B. (2016). TiO2/titanate composite nanorod obtained from various alkali solutions as CO2 sorbents from exhaust gases. Micropor. Mesopor. Mater. 231, 117–127. DOI: 10.1016/j.micromeso.2016.05.024.
  • 26. Kapica-Kozar, J., Kusiak-Nejman, E., Wanag, A., Kowalczyk, Ł., Wrobel, R.J. Mozia, S. & Morawski, A.W. (2015). Alkali-treated titanium dioxide as adsorbent for CO2 capture from air. Micropor. Mesopor. Mater. 202, 241–249, DOI: 10.1016/j.micromeso.2014.10.013.
  • 27. Kapica-Kozar, J., Piróg, E., Kusiak-Nejman, E., Wrobel, R. J., Gęsikiewicz-Puchalska, A., Morawski, A.W., Narkiewicz, U. & Michalkiewicz, B. (2017). Titanium dioxide modified with various amines used as sorbents of carbon dioxide. New J. Chem. DOI: 10.1039/c6nj02808.
  • 28. Kondratenko, E.V., Mul, G., Baltrusaitis, J., Larrazábal, G.O. & Pérez-Ramírez, J. (2013). Status and perspectives of CO2 conversion into fuels and chemicals bycatalytic, photocatalytic and electrocatalytic processes. Energy Environ. Sci. 6, 3112–3135. DOI: 10.1039/C3EE41272E.
  • 29. Marcinkowski, D., Walesa-Chorab, M., Patroniak, V., Kubicki, M., Kadziolka, G. & Michalkiewicz, B. (2014). A new polymeric complex of silver(I) with a hybrid pyrazine-bipyridine ligand - synthesis, crystal structure and its photocatalytic activity. New J. Chem. 38, 604–610. DOI: 10.1039/c3nj01187a.
  • 30. Walesa-Chorab, M., Patroniak, V., Kubicki, M., Kadziolka, G., Przepiorski, J. & Michalkiewicz, B. (2012). Synthesis, structure, and photocatalytic properties of new dinuclear helical complex of silver(I) ions. J. Catal. 291, 1–8. DOI: 10.1016/j.jcat.2012.03.025.
  • 31. Dhakshinamoorthy, A., Navalon, S., Corma, A. & Garcia, H. (2012). Photocatalytic CO2 reduction by TiO2 and related titanium containing solids. Energy Environ. Sci. 5, 9217–9233. DOI: 10.1039/C2EE21948D.
  • 32. Michalkiewicz, B., Majewska, J., Kądziołka, G., Bubacz, K., Mozia, S. & Morawski, A. W. (2014). Reduction of CO2 by adsorption and reaction on surface of TiO2-nitrogen modified photocatalyst. J. CO2 Utiliz. 5, 47–52. DOI: 10.1016/j.jcou.2013.12.004.
  • 33. Yuan, L. & Xu, Y.J. (2015). Photocatalytic conversion of CO2 into value-added andrenewable fuels. Appl. Surf. Sci. 342, 154–167. DOI: 10.1016/j.apsusc.2015.03.050.
  • 34. Wenelska, K., Michalkiewicz, B., Chen, X. & Mijowska, E. (2014). Pd nanoparticles with tunable diameter deposited on carbon nanotubes with enhanced hydrogen storage capacity. Energy 75, 549–554. DOI: 10.1016/j.energy.2014.08.016.
  • 35. Michalkiewicz, B. & Koren, Z.C. (2015). Zeolite membranes for hydrogen production from natural gas: state of the art. J. Porous Mater. 22, 635–646. DOI: 10.1007/s10934-015-9936-6.
  • 36. Wenelska, K., Michalkiewicz, B., Gong, J., Tang, T., Kalenczuk, R., Chen, X. & Mijowska, E. (2013). In situ deposition of Pd nanoparticles with controllable diameters in hollow carbon spheres for hydrogen storage. Int. J. Hydrogen Energ. 38, 16179–16184. DOI: 10.1016/j.ijhydene.2013.10.008.
  • 37. Zielinska, B., Michalkiewicz, B., Mijowska, E. & Kalenczuk, R.J. (2015). Advances in Pd Nanoparticle Size Decoration of Mesoporous Carbon Spheres for Energy Application. Nanoscale Res. Lett. 10, 430. DOI: 10.1186/s11671-015-1113-y.
  • 38. Zielinska, B., Michalkiewicz, B., Chen, X., Mijowska, E. & Kalenczuk, R.J. (2016). Pd supported ordered mesoporous hollow carbon spheres (OMHCS) for hydrogen storage. Chem. Phys. Lett. 647, 14–19. DOI: 10.1016/j.cplett.2016.01.036.
  • 39. Singh, V.K. & Kumar, E.A. (2016). Measurement and analysis of adsorption isotherms of CO2 on activated carbon. App. Therm. Eng. 97, 77–86. DOI: 10.1016/j.applthermaleng.2015.10.052.
  • 40. Srenscek-Nazzal, J., Kaminska, W., Michalkiewicz, B. & Koren, Z.C. (2013). Production, characterization and methane storage potential of KOH-activated carbon from sugarcane molasses. Ind. Crop. Prod. 47, 153–159. DOI: 10.1016/j.indcrop.2013.03.004.
  • 41. Michalkiewicz, B. (2004). Partial oxidation of methane to formaldehyde and methanol using molecular oxygen over Fe-ZSM-5. Appl. Catal. A-Gen. 277, 147–153. DOI: 10.1016/j.apcata.2004.09.005.
  • 42. Michalkiewicz, B., Srenscek-Nazzal, J., Tabero, P., Grzmil, B. & Narkiewicz, U. (2008). Selective methane oxidation to formaldehyde using polymorphic T-, M-, and H-forms of niobium(V) oxide as catalysts. Chem. Pap. 62, 106–113. DOI: 10.2478/s11696-007-0086-4.
  • 43. Michalkiewicz, B. (2005). Kinetics of partial methane oxidation process over the Fe-ZSM-5 catalysts. Chem. Pap. 59, 403–408.
  • 44. Michalkiewicz, B., Srenscek-Nazzal, J. & Ziebro, J. (2009). Optimization of Synthesis Gas Formation in Methane Reforming with Carbon Dioxide. Catal. Lett. 129, 142–148. DOI: 10.1007/s10562-008-9797-6.
  • 45. Markowska, A. & Michalkiewicz, B. (2009). Biosynthesis of methanol from methane by Methylosinus trichosporium OB3b. Chem. Pap. 63, 105–110. DOI: 10.2478/s11696-008-0100-5.
  • 46. Michalkiewicz, B. (2003). Methane conversion to methanol in condensed phase. Kinet. Catal. 44, 801–805. DOI: 10.1023/B:KICA.0000009057.79026.0b
  • 47. Jarosinska, M., Lubkowski, K., Sosnicki, J.G. & Michalkiewicz, B. (2008). Application of Halogens as Catalysts of CH(4) Esterification. Catal. Lett. 126, 407–412. DOI: 10.1007/s10562-008-9645-8.
  • 48. Michalkiewicz, B. (2006). The kinetics of homogeneous catalytic methane oxidation. Appl. Catal. A-Gen. 307, 270–274. DOI: 10.1016/j.apcata.2006.04.006.
  • 49. Michalkiewicz, B., Jarosinska, M. & Lukasiewicz, I. (2009). Kinetic study on catalytic methane esterification in oleum catalyzed by iodine. Chem. Eng. J. 154, 156–161. DOI: 10.1016/j.cej.2009.03.046.
  • 50. Michalkiewicz, B, Kalucki, K. & Sosnicki, J.G. (2003). Catalytic system containing metallic palladium in the process of methane partial oxidation. J. Catal. 215, 14–19. DOI: 10.1016/S0021-9517(02)00088-X.
  • 51. Michalkiewicz, B. (2011). Methane oxidation to methyl bisulfate in oleum at ambient pressure in the presence of iodine as a catalyst. Appl. Catal. A-Gen. 394, 266–268. DOI: 10.1016/j.apcata.2011.01.014.
  • 52. Michalkiewicz, B. & Balcer, S. (2012). Bromine catalyst for the methane to methyl bisulfate reaction. Pol. J. Chem. Technol. 14, 19–21. DOI: 10.2478/v10026-012-0096-z.
  • 53. Ziebro, J., Lukasiewicz, I., Borowiak-Palen, E. & Michalkiewicz, B. (2010). Low temperature growth of carbon nanotubes from methane catalytic decomposition over nickel supported on a zeolite. Nanotechnology 21. DOI: 10.1088/0957-4484/21/14/145308.
  • 54. Ziebro, J., Skorupinska, B., Kadziolka, G. & Michalkiewicz, B. (2013). Synthesizing Multi-walled Carbon Nanotubes over a Supported-nickel Catalyst. Full. Nanot. Carbon Nanost. 21, 333–345. DOI: 10.1080/1536383X.2011.613543.
  • 55. Majewska, J. & Michalkiewicz, B. (2014). Carbon nanomaterials produced by the catalytic decomposition of methane over Ni/ZSM-5 Significance of Ni content and temperature. Carbon Mater. 29, 102–108. DOI: 10.1016/S1872-5805(14)60129-3.
  • 56. Majewska, J. & Michalkiewicz, B. (2013). Low temperature one-step synthesis of cobalt nanowires encapsulated in carbon. Appl. Phys. A-Mater. 111, 1013–1016. DOI: 10.1007/s00339-013-7698-z.
  • 57. Ziebro, J., Lukasiewicz, I., Grzmil, B., Borowiak-Palen, E. & Michalkiewicz, B. (2009). Synthesis of nickel nanocapsules and carbon nanotubes via methane CVD. J. Alloy. Compd. 485, 695–700. DOI: 10.1016/j.jallcom.2009.06.039.
  • 58. Majewska, J. & Michalkiewicz, B. (2016). Preparation of Carbon Nanomaterials over Ni/ZSM-5 Catalyst Using Simplex Method Algorithm. Acta Phys. Pol. A. 129, 153–157. DOI: 10.12693/APhysPolA.129.153.
  • 59. Majewska, J. & Michalkiewicz, B. (2016). Production of hydrogen and carbon nanomaterials from methane using Co/ZSM-5 catalyst. Int. J. Hydrogen Energ. 41, 8668–8678. DOI: 10.1016/j.ijhydene.2016.01.097.
  • 60. Grams, J., Potrzebowska, N., Goscianska, J., Michalkiewicz, B. & Ruppert, A.M. (2016). Mesoporous silicas as supports for Ni catalyst used in cellulose conversion to hydrogen rich gas. Int. J. Hydrogen Energ. 41, 8656–8667. DOI: 10.1016/j.ijhydene.2015.12.146.
  • 61. Michalkiewicz, B. & Majewska, J. (2014). Diameter-controlled carbon nanotubes and hydrogen production. Int. J. Hydrogen Energ. 39, 4691–4697. DOI: 10.1016/j.ijhydene.2013.10.149.
  • 62. Deng, B.S., Hu, Y.B., Chen, T., Wang, B., Huang, J., Wang, J.Y. & Yu, G. (2015). Activated carbons prepared from peanut shell and sunflower seed shell for high CO2 adsorption. Adsorption. 21, 125–133. DOI: 10.1007/s10450-015-9655-y.
  • 63. Montagnaro, F., Silvestre-Albero, A., Silvestre-Albero, J., Rodríguez-Reinoso, F., Erto, A., Lancia, A. & Balsamo, M. (2015). Post-combustion CO2 adsorption on activated carbons with different textural properties. Microp. Mesop. Mat. 209, 157–164. DOI: 10.1016/j.micromeso.2014.09.037.
  • 64. Díez, N., Álvarez, P., Granda, M., Blanco, C., Santamaría, R. & Menéndez, R. (2015). CO2 adsorption capacity and kinetics in nitrogen-enriched activated carbon fibers prepared by different methods. Chem. Eng. J. 281, 704–712. DOI: 10.1016/j.cej.2015.06.126.
  • 65. Ludwinowicz, J. & Jaroniec, M. (2015). Effect of activating agents on the development of microporosity in polymeric-based carbon for CO2 adsorption. Carbon 94, 673–679. DOI: 10.1016/j.carbon.2015.07.052.
  • 66. Kwiatkowski, M., Sreńscek-Nazzal, J. & Michalkiewicz, B. (2017). An analysis of the effect of the additional activation process on the formation of the porous structure and pore size distribution of the commercial activated carbon WG-12. Adsorption. DOI: 10.1007/s10450-017-9867-4.
  • 67. Przepiórski, J., Czyżewski, A., Kapica, J., Moszyński, D., Grzmil, B., Tryba, B., Mozia, S. & Morawski, A.W. (2012). Low temperature removal of SO2 traces from air by MgO-loaded porous carbons. Chem. Eng. J. 191, 147–153. DOI: 10.1016/j.cej.2012.02.087.
  • 68. Czyżewski, A., Kapica, J., Moszyński, D., Pietrzak, R. & Przepiórski, J. (2013). On competitive uptake of SO2 and CO2 from air by porous carbon containing CaO and MgO. Chem. Eng. J. 226, 348–356. DOI: DOI: 10.1016/j.cej.2013.04.061.
  • 69. Wróblewska, A. & Makuch, E. (2014). Regeneration of the Ti-SBA-15 Catalyst Used in the Process of Allyl Alcohol Epoxidation with Hydrogen Peroxide. J. Adv. Oxid. Technol. 17, 44–52. DOI: 10.1515/jaots-2014-0106.
  • 70. Wróblewska, A. (2014). The Epoxidation of Limonene over the TS-1 and Ti-SBA-15 Catalysts. Molecules 19, 19907–19922. DOI: 10.3390/molecules191219907.
  • 71. Wróblewska, A., Ławro, E. & Milchert, E. (2006). Technological Parameter Optimization for Epoxidation of Methallyl Alcohol by Hydrogen Peroxide over TS-1 Catalyst. Ind. Eng. Chem. Res. 45, 7365–7373. DOI: 10.1021/ie0514556.
  • 72. Wróblewska, A. (2006). Optimization of the reaction parameters of epoxidation of allyl alcohol with hydrogen peroxide over TS-2 catalyst. Appl. Catal. A. 309, 192–200. DOI: 10.1016/j.apcata.2006.05.004.
  • 73. Młodzik, J., Wróblewska, A., Makuch, E., Wróbel, R.J. & Michalkiewicz, B. (2016). Fe/EuroPh catalysts for limonene oxidation to 1,2-epoxylimonene, its diol, carveol, carvone and perillyl alcohol. Catal. Today 268, 111–120. DOI: 10.1016/j.cattod.2015.11.010.
  • 74. Wróblewska, A., Makuch, E., Młodzik, J., Koren, Z. & Michalkiewicz, B. (2017). Fe/Nanoporous Carbon Catalysts Obtained from Molasses for the Limonene Oxidation Process. Catal. Lett. 147, 150–160. DOI: 10.1007/s10562-016-1910-7.
  • 75. Wróblewska, A., Makuch, E., Młodzik, J. & Michalkiewicz, B. (2016). Fe-carbon nanoreactors obtained from molasses as efficient catalysts for limonene oxidation. Green Process. Synth. DOI: 10.1515/gps-2016-0148.
  • 76. Demirbas, A. (2009). Agricultural based activated carbons for the removal of dyes from aqueous solutions: a review. J. Hazard. Mater. 167(1), 1–9. DOI: 10.1016/j.jhazmat.2008.12.114.
  • 77. Dias, J.M., Alvim-Ferraz, M.C., Almeida, M.F., Rivera-Utrilla, J. & Sánchez-Polo, M. (2007). Waste materials for activated carbon preparation and its use in aqueous-phase treatment: a review. J. Environ. Manag. 85(4), 833–846. DOI: 10.1016/j.jenvman.2007.07.031.
  • 78. Ello, A.S., Souza, L.K.C., Trokourey, A. & Jaroniec, M. (2013). Coconut shell-based microporous carbons for CO2 capture. Micropor. Mesopor. Mater. 180, 280–283. 10.1016/j.micromeso.2013.07.008.
  • 79. Spahisa, N., Addoun, A., Mahmoudi, H. & Ghaffour, N. (2008). Purification of water by activated carbon prepared from olive stones. Desalination 222, 519–527. DOI: 10.1016/j.desal.0000.00.000.
  • 80. Wang, J., Heerwig, A., Lohe, M.R., Oschatz, M., Borchardt, L. & Kaskel, S. (2012). Fungi-based porous carbons for CO2 adsorption and separation. J. Mater. Chem. 22, 13911–13913. DOI: 10.1039/C2JM32139D.
  • 81. Pendyal, B., Johns, M.M., Marshall, W.E., Ahmenda, M. & Rao, R.M. (1999). The effect of binders and agricultural by-products on physical and chemical properties of granular activated carbons. Biores. Technol. 68, 247–254. DOI: 10.1016/S0960-8524(98)00153-9.
  • 82. Kwiatkowski, M., Fierro, V. & Celzard, A. (2017). Numerical studies of the effects of process conditions on the development of the porous structure of adsorbents prepared by chemical activation of lignin with alkali hydroxides. J. Coll. Inter. Sci. 486, 277–286. DOI: 10.1016/j.jcis.2016.10.003.
  • 83. Kwiatkowski, M. & Broniek, E. (2013). Application of the LBET class adsorption models to the analysis of microporous structure of the active carbons produced from biomass by chemical activation with the use of potassium carbonate. J. Coll. Inter. Sci. 427, 47–52. DOI: 10.1016/j.colsurfa.2013.03.002.
  • 84. Kwiatkowski, M. & Broniek, E. (2012). Application of the LBET class adsorption models to analyze influence of production process conditions on the obtained microporous structure of activated carbons. Coll. Surf. A: Physicochem. Eng. Aspects 411, 105–110. DOI: 10.1016/j.colsurfa.2012.06.046.
  • 85. Grycová, B., Koutník, I. & Pryszcz, A. (2016). Pyrolysis process for the treatment of food waste. Biores. Technol. 218, 1203–1207. DOI: 10.1016/j.biortech.2016.07.064.
  • 86. Grycova, B., Koutnik, I., Pryszcz, A. & Kaloc, M. (2016). Application of pyrolysis process in processing of mixed food wastes. Pol. J. Chem. Technol. 18(1), 19–23. DOI: 10.1515/pjct-2016-0004.
  • 87. Presser, V., McDonough, J., Yeon, S.H. & Gogotsi, Y. (2011). Effect of pore size on carbon dioxide sorption by carbide derived carbon. Energy Environ. Sci. 4, 3059–3066. DOI: 10.1039/C1EE01176F.
  • 88. Deng, Sh., Wei, H., Chen, T., Wang, B., Huang, J. & Yu, G. (2014). Superior CO2 adsorption on pine nut shell-derived activated carbons and the effective micropores at different temperatures, Chem. Eng. J. 253, 46–54. DOI: 10.1016/j.cej.2014.04.115.
  • 89. Serafin, J., Narkiewicz, U., Morawski, A.W., Wróbel, R.J. & Michalkiewicz, B. (2017). Highly microporous activated carbons from biomass for CO2 capture and effective micropores at different conditions. J. CO2 Util. 18, 73–79. DOI: 10.1016/j.jcou.2017.01.006.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-47fd9d63-fa42-4adb-80eb-e585772f279b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.