PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Microstructure, Mechanical Properties and Corrosion Behavior of Zr-Containing AlSi5Cu2Mg Alloy

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of this paper was to analyze the impact of varying zirconium addition on selected properties of AlSi5Cu2Mg alloy. The results of this research showed that zirconium addition in the range of 0.05 to 0.20 wt. % caused a decrease in ultimate tensile strength and yield strength of the experimental alloys after T7 heat treatment, probably due to the formation of primary Al3Zr intermetallic phases. These phases were observed as an individual plates or as a formation of two crossed plate-like phases. Potentiodynamic polarization tests in 3.5% NaCl solution revealed that addition of Zr had a positive effect on thermodynamic corrosion stability of the AlSi5Cu2Mg alloy due to shift of the corrosion potential to a more positive values for all as-cast samples. Addition of Zr in the as-cast alloys improved corrosion kinetics by lowering of corrosion current density.
Twórcy
  • University of Žilina, Faculty of Mechanical Engineering, Univerzitná 8215/1, 010 26 Žilina, Slovakia
  • University of Žilina, Faculty of Mechanical Engineering, Univerzitná 8215/1, 010 26 Žilina, Slovakia
  • University of Žilina, Research Centre, Univerzitná 8215/1, 010 26 Žilina, Slovakia
  • University of Žilina, Faculty of Mechanical Engineering, Univerzitná 8215/1, 010 26 Žilina, Slovakia
Bibliografia
  • [1] D. Bolibruchová, M. Žihalová, Arch. Metall. Mater. 59, 1029-1032 (2014). DOI: https://doi.org/10.2478/amm-2014-0172
  • [2] D. Bolibruchová, L. Richtárech, S.M. Dobosz, K. Major-Gabryś, Arch. Metall. Mater. 62, 339-344 (2017). DOI: https://doi.org/10.1515/amm-2017-0051
  • [3] E. Ozbakir, Ph.D thesis, Development of aluminum alloys for diesel-engine applications, McGill University, Montreal, Canada (2008).
  • [4] J. Trovao, IEEE Veh. Technol. Mag. 16, 153-161 (2021). DOI: https://doi.org/10.1109/mvt.2021.3091798
  • [5] https://www.osti.gov/biblio/1483175-high-performance-cast-aluminum-alloys-next-generation-passenger-vehicle-engines, accessed: 2.6.2022
  • [6] https://issuu.com/inasport/docs/slevarenstvi_1-2_2020_cele_web, accessed: 3.6.2022
  • [7] F. Yangyang, Ph.D thesis, Alloying aluminum with Transition Metals, Worcester Polytechnic Institute, Worcester, USA (2015).
  • [8] Ch. Gao, L. Zhang, B. Zhang, Metals 11 (2021). DOI: https://doi.org/10.3390/met11020357
  • [9] A.R. Farkoosh, Ph.D thesis, Development of creep-resistant Al-Si Alloys Strengthened with Nanoscale Dispersoids, Mining and Materials Engineering, Montreal, Canada (2014).
  • [10] A.R. Farkoosh, X.G. Chen, M. Pekguleryuz, Mater. Sci. Eng. A. 620, 181-189 (2015). DOI: https://doi.org/10.1016/j.msea.2014.10.004
  • [11] K.E. Knipling, D.C. Dunand, D.N. Seidman, Z. Metallk. 97, 246-265 (2006). DOI: https://doi.org/10.3139/146.101249
  • [12] https://www.semanticscholar.org/paper/zirconium-solubility-in-Aluminum-Alloys-Muddle-Sigli/1a3d2aa5d17956c40fa5320d794df851e132af12, accessed: 10.6.2022
  • [13] P.D. Staublin, MSc. thesis, Investigationg Microalloying Elements to Accelerate Zirconium Trialuminide Precipitation in Aluminum Alloys, Michigan Technological University, Michigan, USA (2019).
  • [14] F. Wang, D. Qiu, Z. Liu, J. Taylor, M. Easton, M. Zhang, Acta Mater. 15, 5636-5645 (2013). DOI: https://doi.org/10.1016/j.actamat.2013.05.044
  • [15] M. Rahiman, S. Amirkhanlou, P. Blake, S. Ji, Mat. Sci. Eng. A. 721, 328-338 (2018). DOI: https://doi.org/10.1016/j.msea.2018.02.060
  • [16] F. Wang, D. Qiu, J. Taylor, M. Easton, M. Zhang, Trans. Nonferrous Met. Soc. China 24, 2034-2040 (2014). DOI: https://doi.org/10.1016/s1003-6326(14)63309-4
  • [17] A.M. Samuel, S.S. Mohamed, H.W. Doty, S. Valtierra, F.H. Samuel, Int. J. Cast Met. Res. 32, 46-58 (2018). DOI: https://doi.org/10.1080/13640461.2018.1518662
  • [18] W. Bevilaqua, A. Standtlander, A. Froehlich, G. Braga, A. Reguly, Mater. Res. Express. 7, 026532 (2020). DOI: https://doi.org/10.1088/2053-1591/ab7163
  • [19] G. Liu, P. Blake, S. Ji, J. Alloys Compd. 809, 151795 (2019). DOI: https://doi.org/10.1016/j.jallcom.2019.151795
  • [20] S.K. Shaha, F. Czerwinski, D. Chen, Metall. Mater. Trans. A. 46, 3063-3078 (2015). DOI: https://doi.org/10.1007/s11661-015-2880-x
  • [21] E. Sjolander, S. Seifeddine, J. Matter. Process. Technol. 210, 1249-1259 (2010). DOI: https://doi.org/10.1016/j.jmatprotec.2010.03.020
  • [22] D. Kajánek, F. Pastorek, S. Fintová, A. Bača, Procedia Eng. 192, 399-403 (2017). DOI: https://doi.org/10.1016/j.proeng.2017.06.069
  • [23] B. Hadzima, D. Kajánek, M. Jambor, J. Drábiková, M. Březina, J. Buhagiar, J. Pastorková, M. Jacková, Metals 10 (2020). DOI: https://doi.org/10.3390/met10111521
  • [24] M. Mhaede, F. Pastorek, B. Hadzima, Mater. Sci. Eng. C. 39, 330-335 (2014). DOI: https://doi.org/10.1016/j.msec.2014.03.023
  • [25] E. Ghali, Corrosion Resistance of Aluminum and Magnesium Alloys: Understanding, Performance, and Testing, Wiley, New Jersey, 2010.
  • [26] Y. Kim, J. Park, B. An, Y. Lee, Ch. Yang, J. Kim, Materials 11 (2018). DOI: https://doi.org/10.3390/ma11101982
Uwagi
This research was created within the project of the grant agency VEGA 1/0160/22 and grant system of University of Zilina No. 1/2021 (14862). The authors thank for the support. This paper was also supported under the project of Operational Programme Integrated Infrastructure: Independent research and development of technological kits based on wearable electronics products, as tools for raising hygienic standards in a society exposed to the virus causing the COVID-19 disease, ITMS2014+ code 313011ASK8. The project is co-funding by European Regional Development Fund.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-47fd85cc-aad7-4943-a9be-88e6d4b9e97b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.