Powiadomienia systemowe
- Sesja wygasła!
- Sesja wygasła!
- Sesja wygasła!
- Sesja wygasła!
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Enabling unmanned surface vessels to comply with the collisions regulations is one of the most interesting challenges facing the shipping industry. The “Machine Executable Collision Regulations for Marine Autonomous Systems” (MAXCMAS project aims to develop a comprehensive capability and demonstrate satisfactory execution of marine ‘rules of the road’ by autonomous vessels. This is an Industry-academia Research and Technology (R&T) collaboration with Innovate UK part-funding including a contribution from the Defence Science and Technology Laboratory (Dstl). The project partners include Rolls-Royce, ATLAS ELEKTRONIC UK Ltd, Lloyd’s Register EMEA, Queen’s University of Belfast and Warsash Maritime Academy. This paper discusses how the regulations that have been written by humans for human consumption were portrayed to the researchers by the Master Mariner to enable the generation of intelligent MAXCMAS algorithms.
Rocznik
Tom
Strony
329--334
Opis fizyczny
Bibliogr. 9 poz., rys., tab.
Twórcy
autor
- Warsash Maritime Academy, Southampton, United Kingdom
Bibliografia
- [1] Acar, U., Ziarati, R. and M. Ziarati, 2012. Collisions and groundings–major causes of accidents at sea. An investigation into COLREGs and their application at sea, pp.40‐47.
- [2] Cahill, R. A. 2002. Collisions and their Causes. 3rd ed London. Nautical Institute. p 64.
- [3] Cockcroft, A.N. and J.N.F.Lameijer, 2011. A Guide to the Collision Avoidance Rules. Elsevier.
- [4] Knight, E. F. Handbook of Seamanship. 8th edition
- [5] Lee, G.W.U and C.J.Parker, 2007. Managing Collision Avoidance at Sea. Nautical Institute.
- [6] Morgans Technical Books Ltd. 2011. A Seaman’s Guide to the Rule Of The Road.
- [7] Rowe, R.W. 2007. The Shiphandler’s Guide. Nautical Institute.
- [8] http://www.iala‐aism.org/wiki/iwrap/index.php/Factors_Influencing_Causation_Probability Bayesian Networks for Collision Analysis
- [9] http://www.iala‐aism.org/wiki/iwrap/index.php/Causation_Probability_Modelling
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-47f6f776-2d10-4c73-9670-c0334f560659