Powiadomienia systemowe
- Sesja wygasła!
Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The paper presents the results of physical and numerical tests of fluid flow through the filling of a rotary air heater (RAH). A laboratory-scale test bench was used to measure flow resistance across a fragment of a RAH. Seven types of RAH modules were tested-one steel and six ceramic (as catalyst carriers). The relationship between pressure drop and velocity (Renumber) of flow was used to deduce the flow characteristics for each of the RAH modules tested. Measurements carried out on the test bench were used to create a substitute mathematical model, which in the CFD code Ansys Fluent enables accurate mapping of pressure drop and velocity distribution full fit to the real flow conditions. Numerical calculations were used to validate measurements for an alternative model, to create guidelines for the substitute model of the porous zone and to optimize application checking the correctness of created guidelines for simplified calculations. Flow simulations were performed for various turbulence models. Results were compared to the test-bench measurements to determine the best adjustment for this specific type of reverse flow inside the air duct. This research is part of an ongoing research project: “Hybrid Technology of Flue Gas Denitrification System in Steam and Hot Water Boilers”. The aim of the project is to investigate the concept of using rotary air heater fillings as a carrier for catalytic coatings to reduce nitrogen oxides. In the further part of the research project, the replacement porous zone substitute models will make it possible to precisely calculate the entire RAH and will significantly reduce the calculation time as the basis for further project work.
Czasopismo
Rocznik
Tom
Strony
98--103
Opis fizyczny
Bibliogr. 13 poz., rys., wykr.
Twórcy
autor
- SBB ENERGY S.A., Łowicka 1, 45-324 Opole, Poland
autor
- Silesian University of Technology, Institute of Power Engineering and Turbomachinery, Konarskiego 20B, 44-100 Gliwice, Poland
autor
- Silesian University of Technology, Institute of Power Engineering and Turbomachinery, Konarskiego 20B, 44-100 Gliwice, Poland
Bibliografia
- [1] C. Directive, Directive 2010/75/eu of the european parliament and of the council, Off. J. Eur. Union L 334 (2010) 17–119.
- [2] Decision (eu) 2017/1442 of 31 july 2017 establishing best available techniques (bat) conclusions.
- [3] M. Kotter, H.-G. Lintz, T. Turek, Katalytische stickoxid-reduktion in einem rotierenden wärmeübertrager, Chemie Ingenieur Technik 64 (5) (1992) 446–448.
- [4] K. Veser, Regenerativ-wärmetauscher in der umwelttechnik, betriebserfahrungen mit dem gasvorwärmer an nassentschwefelungsanlagen, mit pilot-anlagen denox-gerechter luft-und gasvorwärmer an entstickungsanlagen und anordnungskriterien für solche; entwicklungsstand des denox-luvo/denox-gavo, VGB Kraftwerkstechnik 66 (12) (1986) 1123–1130.
- [5] Scandenox combined sncr and scr, http://www.scandenox.dk/kontakt1.
- [6] M. J. FRANK, H. GUTBERLET, J. BRANDENSTEIN, Betrieb von rauchgas-entstickungsanlagen mit denox-katalysatoren: Ein übersichtsbeitrag über technologie und betriebspraxis von denoxkatalysatoren, VGB powertech 86 (4) (2006) 72–77.
- [7] B. K. Gullett, P. W. Groff, M. L. Lin, J. M. Chen, Nox removal with combined selective catalytic reduction and selective noncatalytic reduction: pilot-scale test results, Air & waste 44 (10) (1994) 1188–1194.
- [8] R. Wejkowski, W. Wojnar, Selective catalytic reduction in a rotary air heater (rah-scr), Energy 145 (2018) 367–373.
- [9] M. Kuła˙zy´ nski, M. Pronobis, A. Walewski, R. Wejkowski, W. Wojnar, Selektywna redukcja katalityczna (scr) tlenków azotu w regeneracyjnym obrotowym podgrzewaczu powietrza (selective catalytic reduction scr in rotary air heater - in polish), Rynek Energii (6) (2008) 82–87.
- [10] F. A. Anwar-ul Haque, S. Yamada, S. R. Chaudhry, Assessment of turbulence models for turbulent flow over backward facing step, in: Proceedings of the World Congress on Engineering, Vol. 2, 2007, pp. 2–7.
- [11] P. P. Araujo, A. L. T. Rezende, Comparison of turbulence models in the flow over a backward facing step, International Journal of Engineering Research and Science 3 (1).
- [12] D. Jehad, G. Hashim, A. Zarzoor, C. N. Azwadi, Numerical study of turbulent flow over backward-facing step with different turbulence models, Journal of Advanced Research Design 4 (1) (2015) 20–27.
- [13] M. K. Isman, Investigation of inlet effects on backward-facing step flow prediction, Transactions of the Canadian Society for Mechanical Engineering 40 (3) (2016) 317–329.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-47f2bfc3-0f36-453d-97ed-f241b29bf4f4