PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Influence of bath temperature on microstructure and NH3 sensing properties of chemically synthesized CdO thin films

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Cadmium oxide (CdO) thin films were synthesized using chemical bath deposition (CBD) method from aqueous cadmium nitrate solution. The bath temperatures were maintained at room temperature (25 °C) and at higher temperature (80 °C). The structural studies revealed that the films showed mixed phases of CdO and Cd(OH)2 with hexagonal/monoclinic crystal structure. Annealing treatment removed the hydroxide phase and the films converted into pure CdO with cubic, face centered crystal structure. SEM micrographs of as-deposited films revealed nanowire-like morphology for room temperature deposited films while nanorod-like morphology for high temperature deposited films. However, cube-like morphology was observed after air annealing. Elemental composition was confirmed by EDAX analysis. Band gap energies of the as-deposited films varied over the range of 3 eV to 3.5 eV, whereas the annealed films showed band gap energy variation in the range of 2.2 eV to 2.4 eV. The annealed films were successfully investigated for NH3 sensing at different operating temperatures and at different gas concentrations. The room temperature synthesized film showed a response of 17.3 %, whereas high temperature synthesized film showed a response of 13.5 % at 623 K upon exposure to 24 ppm of NH3.
Wydawca
Rocznik
Strony
25--32
Opis fizyczny
Bibliogr. 24 poz., rys., tab.
Twórcy
autor
  • School of Physics, Shri Mata Vaishnodevi University, Kakryal, Katra-182320, J&K, India
autor
  • Department of Physics, Sanjeevan Engineering and Technology Institute, Panhala-416201, MS, India
autor
  • Department of Physics, New Arts, Commerce and Science College, Parner, Ahmednagar, MS, India
  • Department of Physics, Ashokrao Mane Group of Institution, Vathar, Kolhapur, MS, India
  • Department of Chemistry, Anandibai Raorane Art, Commerce and Science College, Vaibhavwadi, MS-416810, India
autor
  • Material Science Research Laboratory, Department of Chemistry, Jaysingpur College, Jaysingpur, MS -416101, India
autor
  • Semiconductor Laboratory, Centre for Materials for Electronics Technology (C-MET), IDA Phase-III, Cherlapally, HCL (PO), Hyderabad-500051, India
autor
  • Centre for Interdisciplinary Research, D.Y. Patil Education Society (Deemed to be University), Kolhapur-416006, India
Bibliografia
  • [1] LEWIS B.G., PAINE D.C., MRS Bull., 25 (2000), 22.
  • [2] KIM H., GILMORE C.M., PIQUE A., HORWITZ J.S., MATTOUSSI H., MURATA H., KAFAFI Z.H., CHRISEY D. B., J. Appl. Phys., 86 (1999), 6451.
  • [3] SELVAN J.A.A., DELAHOY A.E., GUO S., LI Y.M., Sol. Energ. Mat. Sol. C., 90 (2006), 3371.
  • [4] ANANDAN S., Curr. Appl. Phys., 8 (2008), 99.
  • [5] GALICIA D.M.C., CASTANEDO-PEREZ R., JIMENEZSANDOVAL O., JIMENEZSANDOVAL S., TORRESDELGADO G., ZUNIGA-ROMERO C.I., Thin Solid Films, 371 (2000), 105.
  • [6] DONG W., ZHU C., Opt. Mater., 22 (2003), 227.
  • [7] VINODKUMAR R., LETHY K.J., ARUNKUMAR P.R., KRISHNAN R.R., PILLAI N.V., PILLAI V.P.M., PHILIP R., Mater. Chem. Phys., 121 (2010), 406.
  • [8] GRADO-CAFFARO M.A., GRADO-CAFFARO M., Phys. Lett. A, 372 (2008), 4858.
  • [9] PAWAR S.M., GURAV K.V., SHIN S.W., CHOI D.S., KIM I.K., LOKHANDE C.D., RHEE J.I., KIM J.H., J. Nanosci. Nanotechnol., 10 (2010), 1.
  • [10] KUMARAVEL R., MENAKA S., SNEGA S.R.M., RAMAMURTHI K., JEGANATHAN K., Mater. Chem. Phys., 122 (2010), 444.
  • [11] SUBRAMANYAM T.K., UTHANNA S., NAIDU B.S., Mater. Lett., 35 (1998), 214.
  • [12] MAITY R., CHATTOPADHYAY K.K., Sol. Energ. Mat. Sol. C., 90 (2006), 597.
  • [13] LIU X., LI C., HAN S., HAN J., ZHOU C., Appl. Phys. Lett., 82 ( 2003), 1950.
  • [14] GUTIERREZ L.R., ROMERO J.J.C., TAPIA J.M.P., CALVA E.B., FLORES J.C.M., LOPEZ M.O., Mater. Lett., 60 (2006), 3866.
  • [15] BALU A.R., NAGARETHINAM V.S., SUGANYA M., ARUNKUMAR N., SELVAN G., J. Electron. Devices, 12 (2012), 739.
  • [16] KHALLAF H., CHEN C.T., CHANG L.B., LUPAN O., DUTTA A., HEINRICH H., SHENOUDA A., CHOW L., Appl. Surf. Sci., 257 (2011), 9237.
  • [17] SHINDE V.R., LOKHANDE C.D., MANE R.S., HAN S.H., Appl. Surf. Sci., 245 (2005), 407.
  • [18] NENOV T.G., YORDANOV S.P., Ceramic SensorsTechnology and Applications, Technomic Publishing, USA, 1996.
  • [19] WINDICHAMANN H., MARK P., J. Electrochem. Sc., 4 (1979), 627.
  • [20] MIZSEI J., Sensor. Actuat. B-Chem., 23 (1995), 173.
  • [21] QI Q., ZHANG T., ZHENG X., FAN H., LIU L., WANG R., ZENG Y., Sensor. Actuat. B-Chem., 134 (2008), 36.
  • [22] GONG J., CHEN Q., LIAN M., LIU N., STEVENSON R.G., ADAMIC F., Sensor. Actuat. B-Chem., 114 (2006), 32.
  • [23] EGASHIRA M., KAWASUMI S., KAGAWA S., SEIYAMA T., Bull. Chem. Sc. Jpn., 51 (1978), 3144.
  • [24] MONDAL B., BASUMATARI B., DAS J., ROYCHAUDHURY C., SAHA H., MUKHERJEE N., Sensor. Actuat. B-Chem., 194 (2014), 389.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-47f1a531-34e2-403e-ae82-ceaebdfec657
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.