Powiadomienia systemowe
- Sesja wygasła!
Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
DOI
Warianty tytułu
Języki publikacji
Abstrakty
Seakeeping constitutes a fundamental component of marine engineering, which significantly affects the safety, comfort, and operational efficacy of maritime vessels. This paper presents an exhaustive examination of the seakeeping attributes associated with three categories of multihull vessels: trimarans, catamarans, and small waterplane area twin hull (SAWTH) vessels. The investigation delves into the distinctive design merits of these vessels, which include improved stability, velocity, and adaptability, rendering them appropriate for a variety of maritime uses. Through a meticulous evaluation of motion responses such as heave, pitch, and roll, this work elucidates the hydrodynamic performance of each vessel category under varying sea states. Sophisticated computational techniques, such as computational fluid dynamics (CFD), boundary element method (BEM), and hybrid numerical methodologies, are utilized to enhance hull configurations and augment seakeeping capabilities. By integrating insights from a multitude of studies, this review emphasizes the increasing significance of multihull vessels in contemporary maritime operations and offers crucial perspectives for prospective research and design refinement.
Słowa kluczowe
Rocznik
Tom
Strony
32--50
Opis fizyczny
Bibliogr. 115 poz., rys., tab.
Twórcy
autor
- Imam Khomeini Naval University, Department of Mechanical Engineering Noshahr, Iran
autor
- Amirkabir University of Technology, Department of Maritime Engineering Tehran, Iran
- Imam Khomeini Naval University, Department of Mechanical Engineering Noshahr, Iran
autor
- School of Ocean Engineering, Harbin Institute of Technology, Weihai, China
Bibliografia
- 1. Abdul Ghani, P. & Wilson, P. (2018) Experimental analysis of the seakeeping performance of catamaran forms with bulbous bows. International Shipbuilding Progress 65 (1), pp. 1‒28, doi: 10.3233/ISP-170140.
- 2. Abeking & Rasmussen (2018) SWATH technology – The calm revolution. SWATH@A&R – An idea on the rise. [Online]. Available from: https://www.abeking.com/en/ swath-technology [Accessed: October 25, 2024].
- 3. AlaviMehr, J., Lavroff, J., Davis, M.R., Holloway, D.S. & Thomas, G.A. (2017) An Experimental Investigation of Ride Control Algorithms for High-Speed Catamarans Part 1: Reduction of Ship Motions. Journal of Ship Research 61 (1), pp. 35‒49, doi: 10.5957/JOSR.61.1. 160041.
- 4. Aliakbari, T., Adjami, M. & Moonesun, M. (2023) An experimental study of stabilizing ordinary fishing nets (SOFNets) on a stationary SWATH ship seakeeping behavior under irregular waves. Ocean Engineering 283, 115191, doi: 10.1016/j.oceaneng.2023.115191.
- 5. Alsalah, A., Holloway, D. & Ali-Lavroff, J. (2024) Reducing wave impacts on high-speed catamarans through deployment of ride control: Analysis of full-scale measurements. Ocean Engineering 292, 116581, doi: 10.1016/j. oceaneng.2023.116581.
- 6. Askarian Khoob, A., Moghaddam Pour, S. & Feizi, A. (2022) Experimental investigation of a wave-piercing trimaran on the outrigger configurations in terms of seakeeping and added resistance. Journal ofApplied Fluid Mechanics 15 (1), pp. 51–62, doi: 10.47176/jafm.15.01.32761.
- 7. Begovic, E., Bertorello, C., Bove, A. & de Luca, F. (2016) Exploitation of SWATH hull form concept for small working/pleasure craft. In: Soares, G. & Santos (Eds) Maritime Technology and Engineering 3, pp. 603‒609.
- 8. Begovic, E., Bertorello, C., Bove, A. & de Luca, F. (2019) Experimental study on hydrodynamic performance of SWATH vessels in calm water and in head waves. Applied Ocean Research 85, pp. 88‒106, doi: 10.1016/j. apor.2018.10.012.
- 9. Begovic, E., Bertorello, C. & Mancini, S. (2015) Hydrodynamic performances of small size swath craft. Brodogradnja 66 (4), pp. 1‒22.
- 10. Bhattacharyya, R. (1978) Dynamics of marine vehicles. John Wiley & Sons Inc.
- 11. Bonfiglio, L., Perdikaris, P., Vernengo, G., Seixas de Medeiros, J. & Karniadakis, G.E. (2018) Improving SWATH seakeeping performance using multi-fidelity gaussian process and bayesian optimization. Journal of Ship Research 62 (04), pp. 223–240, doi: 10.5957/ JOSR.11170069.
- 12. Bouscasse, B., Broglia, R. & Stern, F. (2013) Experimental investigation of a fast catamaran in head waves. Ocean Engineering 72, pp. 318–330, doi: 10.1016/j. oceaneng.2013.07.012, 2013.
- 13. Cai, J., Yao, T., Liu, H., Wan, L., Wan, J., Fan, X. & Zhao, Y. (2024) Experimental and numerical study of the added resistance and seakeeping performance of a new unmanned survey catamaran. Ocean Engineering 308, 118255, doi: 10.1016/j.oceaneng.2024.118255.
- 14. Camerling, B.J., Tupamahu, A., Luhulima, R.B. & Waileruny, W. (2024) Study on the development of trimaran traditional fishing vessel with a review of resistance and effective power. International Journal of Innovative Research in Engineering and Management 11, pp. 59‒65, doi: 10.55524/ijirem.2024.11.5.8.
- 15. Castiglione, T., Stern, F., Bova, S. & Kandasamy, M. (2011) Numerical investigation of the seakeeping behavior of a catamaran advancing in regular head waves. Ocean Engineering 38, pp. 1806–1822, doi: 10.1016/j. oceaneng.2011.09.003.
- 16. Chen, Z., Zhao, N., Zhao, W. & Xia, J. (2023) Numerical prediction of seakeeping and slamming behaviors of a trimaran in short-crest cross waves compared with long-crest regular waves. Ocean Engineering 285, 115314, doi: 10.1016/j.oceaneng.2023.115314.
- 17. Citarella, N., Casalone, P., Niosi, F. & Bonfanti, M. (2023) Optimal heuristic design of a high efficient SWATH-type vessel. OCEANS 2023 ‒ Limerick, Limerick, Ireland, pp. 1–10, doi: 10.1109/oceanslimerick52467. 2023.10244602.
- 18. Davidson, G., Ali-Lavroff, J., Davis, M., Thomas, G., Binns, J., Freizer, S. & Roberts, T. (2013) Non-linear behaviour in the seakeeping of high speed craft. 12th International Conference on Fast Sea Transportation, pp. 1‒7.
- 19. Davis, M.R. & Holloway, D. (2003) Motion and passenger discomfort on high speed catamarans in oblique seas. International Shipbuilding Progress 50 (4), pp. 333–370, doi: 10.3233/SHP-2003-50.4-4.
- 20. Davis, M.R. & Holloway, D.S. (2007) A comparison of the motions of trimarans, catamarans and monohulls. Australian Journal of Mechanical Engineering 4 (2), pp. 183–195, doi: 10.1080/14484846.2007.11464525.
- 21. Deng, R., Luo, F., Wu, T., Chen, S. & Li, Y. (2019) Time-domain numerical research of the hydrodynamic characteristics of a trimaran in calm water and regular waves. Ocean Engineering 194, 106669, doi: 10.1016/j. oceaneng.2019.106669.
- 22. Dogrul, A., Kahramanoglu, E. & Çakıcı, F. (2021) Numerical prediction of interference factor in motions and added resistance for Delft catamaran 372. Ocean Engineering 223, 108687, doi 10.1016/j.oceaneng.2021.108687.
- 23. Duman, S. & Bal, S. (2022) Turn and zigzag manoeuvres of Delft catamaran 372 using CFD-based system simulation method. Ocean Engineering 264, 112265, doi: 10.1016/j.oceaneng.2022.112265.
- 24. Durante, D., Broglia, R., Diez, M., Olivieri, A., Campana, E.F. & Stern, F. (2020) Accurate experimental benchmark study of a catamaran in regular and irregular head waves including uncertainty quantification. Ocean Engineering 195, 106685, doi: 10.1016/j. oceaneng.2019.106685.
- 25. Dyachkov, V. & Makov, J. (2005) Seakeeping of a fast displacement catamaran. Transport 20 (1), pp. 14–22, doi: 10.1080/16484142.2005.9637990.
- 26. Fang, C. & Chan, H. (2007) An investigation on the vertical motion sickness characteristics of a high-speed catamaran ferry. Ocean Engineering 34, pp. 1909‒1917, doi: 10.1016/j.oceaneng.2007.04.001.
- 27. Fitriadhy, A., Razali, N.S. & AqilahMansor, N. (2017) Seakeeping performance of a rounded hull catamaran in waves using CFD approach. Journal of Mechanical Engineering and Sciences 11, pp. 2601‒2614, doi: 10.15282/ jmes.11.2.2017.4.0238.
- 28. Fu, Z., Li, Y., Gong, J. & Jiang, F. (2022) Numerical analysis of pitch and rolling motions of trimaran in oblique waves, Journal of Marine Science and Technology 27, pp. 77–91, doi: 10.1007/s00773-021-00816-y.
- 29. Gaspersz, F., Tupamahu, A., Luhulima, R.B. & Tubalawony, S. (2023) Study of purse seine fishing ship trimaran seakeeping with axe-bow and without axebow model using computational fluids dynamics. Journal of Marine Science and Technology 20 (1), doi: 10.14710/ kapal.v20i1.47092.
- 30. Gee, N. & Dudson, E. (2006) The X-Craft – a potential solution to littoral warfare requirements. Australian Journal of Mechanical Engineering 3, pp. 103‒112, doi: 10.10 80/14484846.2006.11464499.
- 31. Ghadimi, A., Ghassemi, H. & Ghadimi, P. (2025) Asymmetric foil application for calm water resistance reduction of a trimaran vessel via vertical and oblique struts under different operational speeds within semi-planing and planing regimes. Ships and Offshore Structures, pp. 1–14, doi: 10.1080/17445302.2025.2497553.
- 32. Ghadimi, A., Ghassemi, H. & Ghadimi, P. (2025) Computational fluid dynamic assessment of trimaran resistance: Optimizing performance with hydrofoils across semiplaning and planning regimes. Physics of Fluids 37 (1), 015113, doi: 10.1063/5.0248261.
- 33. Ghadimi, A., Ghassemi, H. & Ghadimi, P. (2025) Hydrodynamic improvement of trimarans through multiple foils for trim control, resistance reduction, and wake attenuation in planing operations. Physics of Fluids 37 (2), 025150, doi: 10.1063/5.0254524.
- 34. Ghadimi, A., Ghassemi, H. & Ghadimi, P. (2025) Headto-head hydrodynamic performance comparison of six foil setups with four and two foil configurations on trimarans in different operational conditions. Physics of Fluids 37 (4), 045128, doi: 10.1063/5.0262446.
- 35. Ghadimi, A., Ghassemi, H. & Ghadimi, P. (2025) Hydrofoil installation and performance optimisation for ship resistance reduction in trimaran through particle swarm optimisation method. Polish Maritime Research 32, pp. 54‒63, doi: 10.2478/pomr-2025-0005.
- 36. Ghadimi, P., Karami, S. & Nazemian, A. (2021) Numerical simulation of the seakeeping of a military trimaran hull by a novel overset mesh method in regular and irregular waves. Scientific Journals Maritime University of Szczecin, Zeszyty Naukowe Akademia Morska w Szczecinie, 65 (137), doi: 10.17402/459.
- 37. Gong, J., Li, Y., Cui, M., Fu, Z. & Hong, Z. (2021) The effect of side-hull position on the seakeeping performance of a trimaran at various headings. Ocean Engineering 239, 109897, doi: 10.1016/j.oceaneng.2021.109897.
- 38. Gong, J., Li, Y., Fu, Z., Li, A. & Jiang, F. (2021) Study on the characteristics of trimaran seakeeping performance at various speeds, Journal of the Brazilian Society of Mechanical Sciences and Engineering 43,194, doi: 10.1007/ s40430-021-02900-1.
- 39. Gong, J., Yan, S., Ma, Q. & Li, Y. (2020) Added resistance and seakeeping performance of trimarans in oblique waves. Ocean Engineering 216, 107721, doi: 10.1016/j. oceaneng.2020.107721.
- 40. Grafton, T. (2007) The roll motion of trimaran ships. PhD Thesis, University of Southampton.
- 41. Guan, G., Zhuang, Z., Yang, Q. & Jin, S. (2021) Design parameter sensitivity analysis for SWATH with minimum resistance at design and service speeds. Ocean Engineering 240, 109961, doi: 10.1016/j.oceaneng.2021.109961.
- 42. Guan, G., Zhuang, Z., Yang, Q., Wang, P. & Jin, S. (2022) Hull form optimization design of SWATH with combination evaluations of resistance and seakeeping performance. Ocean Engineering 264, doi: 10.1016/j. oceaneng.2022.112513.
- 43. Guo, Z., Ma, Q. & Sun, H. (2015) A seakeeping analysis method for T-Craft. Procedia Engineering 126, pp. 265‒269, doi: 10.1016/j.proeng.2015.11.239.
- 44. Hafez, K.A. & El-Kot, A.A. (2012) Comparative investigation of the stagger variation influence on the hydrodynamic interference of high speed trimaran. Alexandria Engineering Journal 51 (3), pp. 153‒169, doi: 10.1016/j. aej.2012.02.002.
- 45. Hamzah, H. (2022) Analysis of wave height to ship motion with displacement of 7,597 tons by finite element method. Maritime Park: Journal of Maritime Technology and Society 1 (2), pp. 70‒75, doi: 10.62012/mp.v1i2. 21956.
- 46. Hassan, A., Riaz, Z., Ali, N., Khan, M.J., Mansoor, A. & Asif, M. (2022) Hull form design, optimization and controllability of a small waterplane area twin hull (SWATH). 19th International Bhurban Conference on Applied Sciences and Technology (IBCAST), Islamabad, Pakistan, pp. 873‒883, doi: 10.1109/IBCAST54850.2022. 9990483.
- 47. Hebblewhite, K., Sahoo, P.K. & Doctors, L.J. (2007) A case study: theoretical and experimental analysis of motion characteristics of a trimaran hull form. Ships and Offshore Structures 2 (2), pp. 149–156, doi: 10.1080/17445300701430242.
- 48. Hudson, D., Molland, A.F., Price, W.G. & Temarel, P. (2001) Seakeeping performance of high speed catamaran vessels in head and oblique waves. Sixth International Conference on Fast Sea Transportation, Southampton, UK. http://www.rina.org.uk/showpub...2209&n=565.
- 49. Hughes, M.J. & Weems, K.M. (2011) Time-domain seakeeping simulations for a high speed catamaran with an active ride control system. 11th International Conference on Fast Sea Transportation. FAST 2011. Honolulu, Hawaii, USA.
- 50. Ikezoe, S., Hirata, N. & Yasukawa, H. (2014) Experimental study on seakeeping performance of a catamaran with asymmetric demi-hulls. Jurnal Teknologi 66, doi: 10.11113/jt.v66.2494.
- 51. Jacobi, G., Thomas, G., Davis, M., Holloway, D., Davidson, G. & Roberts, T. (2012) Full-scale motions of a large high-speed catamaran: the influence of wave environment, speed and ride control system. International Journal of Maritime Engineering 154 (A3), doi: 10.5750/ ijme.v154iA3.883.
- 52. Javanmard, E., Mehr, J.A., Ali-Lavroff, J., Holloway, D.S. & Davis, M.R. (2023) An experimental investigation of the effect of ride control systems on the motions response of high-speed catamarans in irregular waves. Ocean Engineering 281, 114899, doi: 10.1016/j. oceaneng.2023.114899.
- 53. Javanmardemamgheisi, E., Mehr, J.A., Holloway, D.S., Davis, M.R. & Ali-Lavroff, J. (2024) Ride control system effects on motion, slam load, and passenger comfort of high-speed catamarans: An experimental study in irregular waves. Proceedings of the ASME 43rd International Conference on Ocean, Offshore and Arctic Engineering. Volume 5A: Ocean Engineering. Singapore, June 9–14, doi: 10.1115/OMAE2024- 126372.
- 54. Kang, K., Lee, Ch., Kim, S., Park, Y. & Lee, J. (2002) Hydrodynamic performance of a 2,500-ton class trimaran. Journal of Ship and Ocean Technology 6 (2), pp. 23–36.
- 55. Kara, F. (2016) Time domain prediction of seakeeping behaviour of catamarans. International Shipbuilding Progress 62, pp, 161–187, doi: 10.3233/ISP-160120.
- 56. Karimkhani, M., Ghassemi, H. & He, G. (2025) Review on the active and passive control systems for the planing boats. American Journal of Civil Engineering and Architecture 13 (3), pp. 62–72, doi: 10.12691/ajcea-13-3-2.
- 57. Kimberley Boat Cruises (2022) Diversity III Kimberley luxury cruises. [Online]. Available from: https://www. kimberleyboatcruises.com.au/kimberley-cruise-vessels/ diversity-iii/# [Accessed: May 25, 2025].
- 58. Lau, C., Ali-Lavroff, J., Dashtimanesh, A., Holloway, D. & Mehr, J. (2024) High-speed catamaran response with ride control system in regular waves by Forcing Function Method in CFD. Ocean Engineering 297, 117111, doi: 10.1016/j.oceaneng.2024.117111.
- 59. Lau, C., Ali-Lavroff, J., Holloway, D. S., Shabani, B., Mehr, J.A. & Thomas, G. (2022), Influence of an active T-foil on motions and passenger comfort of a large high-speed wave-piercing catamaran based on sea trials, Journal of Marine Science and Technology 27, pp. 856– 872, doi: 10.1007/s00773-022-00876-8.
- 60. Levine, M.D., Edwards, S. J., Howard. D., Weems, K., Sapsis, T.P. & Pipiras, V. (2024) Multi-fidelity data-adaptive autonomous seakeeping. Ocean Engineering 292, 116322, doi: 10.1016/j.oceaneng.2023.116322.
- 61. Li, Y., Li, A., Gong, J., Fu, Z. & Dai, K. (2021) Numerical investigation on added resistance and motions of a high-speed trimaran equipped with T-foil and stern flap in regular head and oblique waves for varying wave steepness, Journal of the Brazilian Society of Mechanical Sciences and Engineering 43, 451, doi: 10.1007/s40430- 021-03177-0.
- 62. Liang, L., Yuan, J., Zhang, S., Shi, H., Liu, Y. & Zhao, P. (2019) Design ride control system using two stern flaps based 3 DOF motion modeling for wave piercing catamarans with beam seas. PLOS One 14 (3), e0214400, doi: 10.1371/journal.pone.0214400.
- 63. Liao, X., Chen, Zh., Gui, H. & Du, M. (2021) CFD prediction of ship seakeeping and slamming behaviors of a trimaran in oblique regular waves. Journal of Marine Science and Engineering 9, 1151, doi: 10.3390/jmse9101151.
- 64. Liu, L., Wang, X., He, R., Zhang, Z. & Feng, D. (2020) CFD prediction of stern flap effect on catamaran seakeeping behavior in long crest head wave. Applied Ocean Research 104, 102367, doi: 10.1016/J.APOR.2020.102367.
- 65. Luhulima, R.B. (2017) An Investigation into the resistance of displacement trimaran: A comparative analysis between experimental and CFD approaches. International Journal of Mechanical Engineering (IJME) 6 (5), pp. 9‒18.
- 66. Luhulima, R., Gasperz, F., Metekohy, O. & Lainsamputty, H. (2023) Response motion analysis of trimaran fishing vessels on irregular waves using CFD. International Journal of Progressive Sciences and Technologies 38 (1), pp. 162‒169, doi: 10.52155/ijpsat.v38.1.5224.
- 67. Luhulima, R.B., Setyawan, D. & Utama, I. (2015) Selecting monohull, catamaran and trimaran as suitable passenger vessels based on stability and seakeeping criteria. The 14th International Ship Stability Workshop (ISSW). 29th September. Kuala Lumpur, Malaysia.
- 68. Luhulima, R., Sutiyo, S., Muhammad, A. & Utama, I.K. (2021) Experimental investigation into the resistance characteristics of trimaran and pentamaran configurations. International Journal of Technology 12, pp. 1058‒1070, doi: 10.14716/ijtech.v12i5.5228.
- 69. Ma, S., Zhu, M., Liu, D., Liu, J. & Wang, W. (2023) Experimental study of wet deck slamming for a SWATH in regular waves. Ocean Engineering 288, 115996, doi: 10.1016/j.oceaneng.2023.115996.
- 70. McDonald, T., Bucknall, R. & Greig, A. (2013) Comparing trimaran small waterplane area center hull (TriSAWCH), monohull, and trimaran hull forms: some initial results. Journal of Ship Production and Design 29, pp. 211–220, doi: 10.5957/jspd.2013.29.4.211.
- 71. Mehr, J., Ali-Lavroff, J., Davis, M., Holloway, D. & Thomas, G. (2017) An experimental investigation of ride control algorithms for high-speed catamarans. Part 2: Mitigation of wave impact loads. Journal of Ship Research 61 (2), doi: 10.5957/JOSR.61.2.160046.
- 72. Murdijanto, Utama, I.K. & Jamaluddin, A. (2011) An investigation into the resistance/powering and seakeeping characteristics of river catamaran and trimarana. MAKARA of Technology Series 15 (1), doi: 10.7454/mst. v15i1.853.
- 73. Nazari, H., Ghassemi, H., Ghaisi, M., He, G. & Akbari Vakilabadi, K. (2025) Review of resistance and seakeeping characteristics of SWATH Ships. Ships and Offshore Structures, pp. 1–20, doi: 10.1080/17445302.2025.24833 12.
- 74. Nazemian, A. & Ghadimi, P. (2021) CFD-based optimization of a displacement trimaran hull for improving its calm water and wavy condition resistance. Applied Ocean Research 113, 102729, doi: 10.1016/j.apor.2021.102729.
- 75. Nazemian, A. & Ghadimi, P. (2021) Global optimization of trimaran hull form to get minimum resistance by slender body method. Journal of Brazilian Society of Mechanical Sciences and Engineering 43, 67, doi: 10.1007/s40430- 020-02791-8.
- 76. Nazemian, A. & Ghadimi, P. (2022) Multi-objective optimization of ship hull modification based on resistance and wake field improvement: combination of adjoint solver and CAD-CFD-based approach. Journal of Brazilian Society of Mechanical Sciences and Engineering 44, 27, doi: 10.1007/s40430-021-03335-4.
- 77. Nowruzi, L., Enshaei, H., Ali-Lavroff, J. & Davis, M. (2020) Parametric study of seakeeping of a trimaran in regular oblique waves. Ships and Offshore Structures 15, pp. 1‒12, doi: 10.1080/17445302.2020.1735809.
- 78. Ohkusu, M. & Takaki, M. (1971) On the motion of multihull ships in waves (ii). Internal Report 62. Research Institute for Applied Mechanics, University of Kyushu, doi: 10.5109/7172173.
- 79. Onas, A.S. & Datla, R. (2009) Experimental analysis of roll damping of a trimaran with varying side hull stagger and transverse spacing. WMTC 2009, Available at: http:// imare.in/media/30616/paper-no6a-2-drrdatla [Accessed: May 20, 2025].
- 80. Pechenyuk, A. (2022) Study of seakeeping performance of fishing vessels with the help of CFD methods. Shipping & Navigation 33 (1), pp. 96‒105, doi: 10.31653/2306- 5761.33.2022.96-105.
- 81. Pérez-Arribas, F. & Calderon-Sanchez, J. (2020) A parametric methodology for the preliminary design of SWATH hulls. Ocean Engineering 197, 106823, doi: 10.1016/j.oceaneng.2019.106823.
- 82. Pérez Fernández, R. (2012) Seakeeping in the navigation ‒ Example in trimaran ship. International Journal for Traffic and Transport Engineering 2 (3), pp. 221–235, doi: 10.7708/ijtte.2012.2(3).05.
- 83. Piscopo, V. & Scamardella, A. (2015) The overall motion sickness incidence applied to catamarans. International Journal of Naval Architecture and Ocean Engineering 7 (4), pp. 655‒669, doi: 10.1515/ijnaoe-2015-0046.
- 84. Poundra, G.A.P., Utama, I.K., Hardianto, D. & Suwasono, B. (2017) Optimizing trimaran yacht hull configuration based on resistance and seakeeping criteria. Procedia Engineering 194, pp. 112‒119, doi: 10.1016/j. proeng.2017.08.124.
- 85. Renaud, P., Sacher, M. & Scolan, Y. (2022) Multi-objective hull form optimization of a SWATH configuration using surrogate models. Ocean Engineering 256, 111209, doi: 10.1016/j.oceaneng.2022.111209.
- 86. Romero-Tello, P., Gutiérrez, J., Piazzese, J. & Serván-Camas, B. (2023) Seakeeping analysis of dead ship condition in fishing ships based on artificial neural networks. Revista Internacional de Métodos Numéricos Para Cálculo y Diseño en Ingeniería 39 (4), doi: 10.23967/j. rimni.2023.10.004.
- 87. Romero-Tello, P., Serván-Camas, B. & GutierrezRomero, J.E. (2022) Seakeeping optimization of cruise ship based on artificial neural networks. Trends in Maritime Technology and Engineering 1, pp. 435–441, doi: 10.1201/9781003320272-48.
- 88. Scurtu, I., Popa, C. & Popa, F. (2025) Case study for containerships’ seakeeping performance analysis. Scientific Journals of the Maritime University of Szczecin, Zeszyty Naukowe Politechniki Morskiej w Szczecinie 81 (153), pp. 47‒56, doi: 10.17402/630.
- 89. Soardi, F. & Vernengo, G. (2024) Seaworthiness and resistance performance of a catamaran at preliminary design stage. In: Soares, C.G. & Santos, T.A. (Eds) Advances in Maritime Technology and Engineering 2, pp. 179–187, doi: 10.1201/9781003508779-20.
- 90. Su, Y., Wang, J., Zhuang, J., Shen, H. & Bi, X. (2021) Experiments and CFD of a variable-structure boat with retractable twin side-hulls: Seakeeping in waves. Ocean Engineering 235, 109358, doi: 10.1016/j. oceaneng.2021.109358.
- 91. Sun, W., Gong, Y. & Zhang, K. (2025) Preliminary development of a novel salvage catamaran and evaluation of hydrodynamic performance. Journal of Marine Science and Engineering 13 (4), 680, doi: 10.3390/ jmse13040680.
- 92. Sun, Y., Wang, Y., Zhang, D., Wu, Z. & Jin, G. (2024) Numerical research on a t-foil control method for trimarans based on phase lag. Journal of Marine Science and Engineering 12, 1209, doi: 10.3390/jmse12071209.
- 93. Sun, X., Yao, C. & Ye, Q. (2016) Numerical investigation on seakeeping performance of SWATH with three-dimensional translating-pulsating source green function. Engineering Analysis with Boundary Elements 73, pp. 215‒225, doi: 10.1016/j.enganabound.2016.10.005.
- 94. Sun, X., Yao, C. & Ye, Q. (2017) Numerical and experimental study on seakeeping performance of a SWATH vehicle in head waves. Applied Ocean Research 68, pp. 262– 275, doi: 10.1016/j.apor.2017.09.010.
- 95. The Standard (2024) Stealth drone and J-35A jet take pride of place at show. [Online]. Available from: https://www. thestandard.com.hk/section-news/section/11/267663/ Stealth-drone-and-J-35A-jet-take-pride-of-place-at-show [Accessed: April 14, 2025].
- 96. Thomas, G., Doctors, L.J., Couser, P. & Hackett, M. (2007) Catamaran motions in beam and oblique seas. 9th International Conference on Fast Sea Transportation, FAST 2007, Shanghai, China, pp. 426‒433.
- 97. Thomas, G., Winkler, S., Davis, M.R., Holloway, D., Matsubara, S., Ali-Lavroff, J. & French, B. (2011) Slam events of high-speed catamarans in irregular waves. Journal of Marine Science and Technology 16 (1), pp. 8–21, doi: 10.1007/S00773-010-0105-Y.
- 98. Tupper, E.C. (2013) Introduction to naval architecture. Fifth edition. Butterworth-Heinemann.
- 99. Wang, S., Duan, F. & Wang, E. (2024) Study on the performance and efficiency of multi-objective evolutionary algorithms for trimaran outrigger layout seakeeping optimization problem. Ocean Engineering 309 (2), 118526, doi: 10.1016/j.oceaneng.2024.118526.
- 100. Waskito, K. & Yanuar (2021) On the high-performance hydrodynamics design of a trimaran fishing vessel. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 83, pp. 17‒33, doi: 10.37934/arfmts.83.1. 1733.
- 101. Wu, C., Zhou, D., Gao, L. & Miao, Q. (2011) CFD computation of ship motions and added resistance for a high speed trimaran in regular head waves. International Journal of Naval Architecture and Ocean Engineering 3 (1), pp. 105‒110, doi: 10.2478/IJNAOE-2013-0051.
- 102. Wulandari, A.I., Sulisetyono, A., Utama, I.K., Ali, B., Virliani, P., Arianti, E., Nurhadi, M.M.A., Kurniati Arifah, A. & Zen, H. (2024) Seakeeping performance of warship catamaran under varied hull separation and wave heading conditions: An integrated numerical and experimental studies. Scientific Journal of Maritime Research 38, p.p 275‒296, doi: 10.31217/p.38.2.9.
- 103. Xu, W., Zhang, J. & Zhong, M. (2023) A sliding mode predictive anti-pitching control for a high-speed multihull. Ocean Engineering 285, 115466, doi: 10.1016/j. oceaneng.2023.115466.
- 104. Yoshida, M., Kihara, H., Iwashita, H., Itakura, H., Bao, W. & Kinoshita, T. (2009) On the resonance-motionfree swath (RMFS) as an oceangoing large fast platform. Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering. Volume 4: Ocean Engineering; Ocean Renewable Energy; Ocean Space Utilization, Parts A and B. Honolulu, Hawaii, USA. May 31–June 5, 2009, pp. 1281‒1289, ASME, doi: 10.1115/ OMAE2009-79103.
- 105. Yun, L. & Bliault, A. (2012) Catamarans and Multihull Craft. In: High Performance Marine Vessels, pp. 203‒256. Springer, Boston, doi: 10.1007/978-1-4614-0869-7_6.
- 106. Yun, L., Bliault, A. & Rong, H.Z. (2019) High speed catamarans and multihulls. Springer. doi.:10.1007/978-1- 4939-7891-5.
- 107. Zhang, J. (1997) Design and hydrodynamic performance of trimaran displacement ships. Doctoral thesis. University of London.
- 108. Zhang, Y., Wang, P., Liu, Y. & Hu, J. (2021) Nonlinear rolling stability and chaos research of trimaran vessel with variable lay-outs in regular and irregular waves under wind load. Brodogradnja 72 (3), pp. 97–123, doi: 10.21278/ BROD72307.
- 109. Zhang, Y., Wang, P., Yu, P. & Hu, J.M. (2022) Numerical and experimental study on nonlinear roll damping characteristics of trimaran vessel. Ocean Engineering 247, 110778, doi: 10.1016/j.oceaneng.2022.110778.
- 110. Zheng, L., Liu, Z., Zeng, B., Meng, H. & Wang, X. (2023) Experimental and numerical study on heave and pitch motion calculation of a trimaran, Journal of Marine Science and Technology 28, pp. 136–152, doi: 10.1007/ s00773-022-00910-9.
- 111. Zhu, Q. & Ma, Y. (2019) Design of H∞ anti vertical controller and optimal allocation rule for catamaran T-foil and trim tab. Journal of Ocean Engineering and Marine Energy 5, pp. 205–216, doi: 10.1007/s40722-019-00139-6.
- 112. Zhu, Q. & Ma, Y. (2020) A design of T-foil and trim tab for fast catamaran based on NSGA-II, Journal of Hydrodynamics 32 (1), pp. 161–174, doi: 10.1007/s42241-019- 0055-8.
- 113. Zhuang, J., Li, X., Wang, J., Zhang, L., Yang, J. & Huang, C. (2025) Experimental investigation on seakeeping performance of variable-structure SWATH in heading regular waves. Ocean Engineering 315, 119783, doi: 10.1016/j.oceaneng.2024.119783.
- 114. Zong, Z., Sun, Y. & Jiang, Y. (2019) Experimental study of controlled T-foil for vertical acceleration reduction of a trimaran. Journal of Marine Science and Technology 24, pp. 553–564, doi: 10.1007/s00773-018-0576-9.
- 115. Zu, M., Karl, G. & Anders, R. (2024) Seakeeping criteria revisited. Ocean Engineering 297, 116785, doi: 10.1016/j. oceaneng.2024.116785.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-47efbb66-fcb7-45da-aab7-2e1eed860915
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.