PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Accuracy analysis of gravity field changes from GRACE RL06 and RL05 data compared to in situ gravimetric measurements in the context of choosing optimal filtering type

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Global satellite gravity measurements provide unique information regarding gravity field distribution and its variability on the Earth. The main cause of gravity changes is the mass transportation within the Earth, appearing as, e.g. dynamic fluctuations in hydrology, glaciology, oceanology, meteorology and the lithosphere. This phenomenon has become more comprehensible thanks to the dedicated gravimetric missions such as Gravity Recovery and Climate Experiment (GRACE), Challenging Minisatellite Payload (CHAMP) and Gravity Field and Steady-State Ocean Circulation Explorer (GOCE). From among these missions, GRACE seems to be the most dominating source of gravity data, sharing a unique set of observations from over 15 years. The results of this experiment are often of interest to geodesists and geophysicists due to its high compatibility with the other methods of gravity measurements, especially absolute gravimetry. Direct validation of gravity field solutions is crucial as it can provide conclusions concerning forecasts of subsurface water changes. The aim of this work is to present the issue of selection of filtration parameters for monthly gravity field solutions in RL06 and RL05 releases and then to compare them to a time series of absolute gravimetric data conducted in quasi-monthly measurements in Astro-Geodetic Observatory in Józefosław (Poland). The other purpose of this study is to estimate the accuracy of GRACE temporal solutions in comparison with absolute terrestrial gravimetry data and making an attempt to indicate the significance of differences between solutions using various types of filtration (DDK, Gaussian) from selected research centres.
Słowa kluczowe
EN
Rocznik
Strony
100--117
Opis fizyczny
Bibliogr. 28 poz., rys.
Twórcy
  • Faculty of Geodesy and Cartography, Warsaw University of Technology, Warsaw, Poland
  • Faculty of Geodesy and Cartography, Warsaw University of Technology, Warsaw, Poland
Bibliografia
  • Abe, M, C Kroner, S Petrovic, F Barthelmes, A Weise, B Creutzfeldt, T Jahr, G Jentzsch, H Wilmes, and H Wziontek. 2012. A Comparison of GRACE-Derived Temporal Gravity Variations with Observations of Six European Superconducting Gravimeters. Geophysical Journal International. 545-56. https://doi.org/10.1111/j.1365-246X.2012.05641.x.
  • Chen, J. L., Wilson, C. R., & Seo, K. W. 2006. Optimized smoothing of Gravity Recovery and Climate Experiment (GRACE) time-variable gravity observations. Journal of Geophysical Research: Solid Earth, 111(B6).
  • Cheng, Minkang, Byron D. Tapley, and John C. Ries. 2013. “Deceleration in the Earth’s Oblateness.” Journal of Geophysical Research: Solid Earth 118 (2): 740-47. https://doi.org/10.1002/jgrb.50058.
  • Creutzfeldt, Benjamin. 2010. “The Effect of Water Storages on Temporal Gravity Measurements and the Benefits for Hydrology,” 106. http://opus.kobv.de/ubp/volltexte/2010/4857/.
  • Crossley, David, Caroline de Linage, Jacques Hinderer, Jean-Paul Boy, and James Famiglietti. 2012. “A Comparison of the Gravity Field over Central Europe from Superconducting Gravimeters, GRACE and Global Hydrological Models, Using EOF Analysis.” Geophysical Journal International 189 (2): 877-97. https://doi.org/10.1111/j.1365-246X.2012.05404.x.
  • Dahle, Christoph, Frank Flechtner, Christian Gruber, Daniel König, Rolf König, and Grzegorz Michalak. 2013. “GFZ GRACE Level-2 Processing Standards Document for Level-2 Product Release 0005,” https://doi.org/10.2312/GFZ.b103-1202-25.
  • Dahle, Christoph, Michael Murböck, Frank Flechtner, Henryk Dobslaw, Grzegorz Michalak, Karl Hans Neumayer, Oleh Abrykosov, et al. 2019. “The GFZ GRACE RL06 Monthly Gravity Field Time Series : Processing Details and Quality Assessment,” 1-22. https://doi.org/10.3390/rs11182116.
  • Duan. 2009. “On the Postprocessing Removal of Correlated Errors in GRACE Temporal Gravity Field Solutions,” 1095-1106. https://doi.org/10.1007/s00190-009-0327-0.
  • Godah, Walyeldeen, and Jan Krynski. 2017. “On the Estimation of Physical Height Changes Using GRACE Satellite Mission Data - A Case Study of Central Europe” 66 (2): 211-26. https://doi.org/10.1515/geocart-2017-0013.
  • Godah, Walyeldeen, Jan Krynski, and Malgorzata Szelachowska. 2018. “PT of Global Geopotential Models ( GGMs ). It Is Also Aimed at Improving Quasigeoid Heights Determined,” https://doi.org/10.1016/j.jappgeo.2018.03.002.
  • Godah, Walyeldeen, Malgorzata Szelachowska, and Jan Krynski. 2015. “On the Selection of GRACE-Based GGMs and a Filtering Method for Estimating Mass Variations in the Earth System over Poland” 7 (1): 5-14.
  • Horvath, Alexander, Michael Murböck, Roland Pail, and Martin Horwath. 2018. “Decorrelation of GRACE Time Variable Gravity Field Solutions Using Full Covariance Information,” 1-16. https://doi.org/10.3390/geosciences8090323.
  • Jekeli, C. 1981. Alternative Methods to Smooth the Earth’s Gravity Field. Reports of the Department of Geodetic Science. Columbus, Ohio : Ohio State University Dept. of Geodetic Science and Surveying.
  • Kloch-Glowka, Grazyna, Jan Krynski, and Malgorzata Szelachowska. 2012. “Time Variations of the Gravity Field over Europe Obtained from GRACE Data” 92 (1): 175-90.
  • Kuczynska-Siehien, Joanna, Dimitrios Piretzidis, Michael G Sideris, and Tomasz Olszak. 2019. “Monitoring of Extreme Land Hydrology Events in Central Poland Using GRACE , Land Surface Models and Absolute Gravity Data.”
  • Kusche, Jügen. 2007. “Approximate Decorrelation and Non-Isotropic Smoothing of Time-Variable GRACE-Type Gravity Field Models.” Journal of Geodesy 81 (11): 733-49. https://doi.org/10.1007/s00190-007-0143-3.
  • Kusche, J., Schmidt, R., Petrovic, S., & Rietbroek, R. (2009). Decorrelated GRACE time-variable gravity solutions by GFZ, and their validation using a hydrological model. Journal of Geodesy, 83(10), 903-913.
  • Landerer, F. W., & Swenson, S. C. (2012). Accuracy of scaled GRACE terrestrial water storage estimates. Water Resources Research, 48(4).
  • Neumeyer, J, F Barthelmes, C Kroner, and S Petrovic. 2005. “Analysis of Gravity Field Variations Derived from Superconducting Gravimeter Recordings, GRACE Satellite and Hydrological Models at Selected European Sites,” no. 1: 1-21.
  • Ries, J., S. Bettadpur, R. Eanes, Z. Kang, U. Ko, C. McCullough, P. Nagel, et al. 2016. “The Combined Gravity Model GGM05C.” GFZ Data Services.
  • Sakumura, C, S Bettadpur, and S Bruinsma. 2014. “Ensemble Prediction and Intercomparison Analysis of GRACE Time-Variable Gravity Field Models,” 1389-97. https://doi.org/10.1002/2013GL058632.1.
  • Savannah S. Cooley; Felix W. Landerer. 2019. “GRACE D-103133 Gravity Recovery and Climate Experiment Level-3 Data Product User Handbook.”
  • Swenson S, Wahr J (2006) Post-processing removal of correlated errors in GRACE data. Geophys Res Lett 33:L08402. doi: 10.1029/2005GL025285
  • Swenson, Sean, Don Chambers, and John Wahr. 2008. “Estimating Geocenter Variations from a Combination of GRACE and Ocean Model Output.” Journal of Geophysical Research: Solid Earth 113 (8): 1-12. https://doi.org/10.1029/2007JB005338.
  • Vaníček. 1971. “Further Development and Properties of the Spectral Analysis by Least-Squares.” Astrophysics and Space Science 12 (1): 10-33. https://doi.org/10.1007/BF00656134.
  • Vaníček, Petr. 1969. “Approximate Spectral Analysis by Least-Squares Fit.” Astrophysics and Space Science 4 (4): 387-91. https://doi.org/10.1007/BF00651344.
  • Vishwakarma, Bramha Dutt, and Balaji Devaraju. 2018. “What Is the Spatial Resolution of GRACE Satellite Products for Hydrology ?,” https://doi.org/10.3390/rs10060852.
  • Wahr. 1998. “Time Variability of the Earth’s Gravity Field” 103: 205-29.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-47edf144-166f-4efa-9706-91b1d3ba797f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.