PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Dynamic ultrasonic model of left ventricle

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Two different tissue phantoms of the left ventricle to imitate a beating left ventricle were developed: first was prepared using a sponge material and second phantom was constructed using a polyvinyl alcohol material modeled into a homogeneous hollow cylinder: approximately 10 cm and 12 cm in length for the first and second phantom, respectively. Both phantoms were 5 cm in diameter, with a wall thickness of 1.0 cm. Additionally, a small part of the wall of the second phantom was processed to simulate the stiffness of myocardial infarction. The phantoms were connected at the end to an adjustable external pump. The pulse volume inside the cylinder was set between 12 to 50 ml at rates of 40, 60, 100, 120 beats/minute. The phantoms were immersed in water for ultrasound scanning with two different insonation angles (90 and 65 degrees). Strain and strain rate were measured with different combinations of angles and pulse rates. The main aim of this work was to develop the new method for validation of the human infarct wall strain calculation procedures using the speckles tracking.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
231--236
Opis fizyczny
Bibliogr. 13 poz., rys., tab.
Twórcy
  • Department of Ultrasound, Institute of Fundamental Technological Research Polish Academy of Sciences,5B Adolfa Pawińskiego Str., 02-106 Warszawa, Poland
autor
  • Department of Ultrasound, Institute of Fundamental Technological Research Polish Academy of Sciences,5B Adolfa Pawińskiego Str., 02-106 Warszawa, Poland
autor
  • Department of Ultrasound, Institute of Fundamental Technological Research Polish Academy of Sciences,5B Adolfa Pawińskiego Str., 02-106 Warszawa, Poland
autor
  • Cardiology & Internal Medicine Clinic, Military Institute of Medicine, Cardiac Rapid Diagnostic Department, 128 Szaserów Str., 04-141 Warszawa, Poland
Bibliografia
  • [1] A. Nowicki, R. Olszewski, J. Etienne, P. Karłowicz, J. Adamus, The Assessment of Wall Velocity Gradient Imaging using Test-Phantom, Ultrasound in Medicine and Biology, Vol. 22, 9, 1255-1260, 1996.
  • [2] A. Lange, P. Typha, A. Nowicki, R. Olszewski, T. Anderson, J. Adamus, G. Sutherland, A. Keith, Three-dimensional echocardiographic evolution of left ventricular volume: Comparison of oppler myocardial imaging and standard gray-scale imaging with cineventrculography – an in vitro and in vivo study, American Heart Journal, Vol. 135, 6, 970-979, 1998.
  • [3] L. N. Bohs, G. E. Trahey, A novel method for ultrasonic imaging of the angle of the independent blood flow and tissue motion, IEEE Tran. Biomed. Eng., BME-38, 280-286.
  • [4] L. K. Ryan, G. R. Lockwood, T. S. Bloomfield, F. S. Foster, Speckle tracking in High frequency ultrasound images with application to intravascular imaging, Proceedings IEEE Ultrasonics Symposium, 889-892, 1993.
  • [5] J. C. Berrioz, P. C. Pedersen, Ultrasonic measurement of forced diameter variations in an elastic tube, Ultrason. Imaging, Vol. 16, 124-142, 1994.
  • [6] E, J. Chen, W. K. Jenkins, W. D. O'Brien Jr., The impact of various imaging parameters on ultrasonic displecement and velocity estimates, IEEE Trans. Ultrason. Ferroelectr. Frequency Control, Vol. 41, 293-301, 1994.
  • [7] E. J. Chen, W. K. Jenkins, W. D. O'Brien Jr., Performance of ultrasonic speckle tracking in various tissues, j. Acoust. SOC. Am., Vol. 98, 3, 1273-1278, 1995.
  • [8] C. L. De Korte, I. A. Cepsedes, F. W. Van der Steen, C. T. Lancee, Intravascular elasticity imaging using ultrasound: Feasibility studies in phantoms, Ultrasound Med. & Biol, Vol. 23, 735-746, 1997.
  • [9] T. J. Hall, M. Insana, M. F. Bilgen, T. A. Krouskop, Phantom materials for elastography, IEEE Trans. Ultrason. Ferroelectr Freq. Contr., Vol. 44, 1355-1364, 1997.
  • [10] E. Brusseau, J. Fromageau, G. Finet, P. Delachartre, P. Vray, Axial strain of intravascular date: results on polivinyl alcochol cryogel phantoms and carotid artery, Ultrasound Med. & Biol, Vol. 27, 553-1642, 2001.
  • [11] S. Langeland, J. D'Hooge, T. Claessens, P. Claus, T. Langeland, P. Verdonck, T. Suetens, G. R. Sutherland, B. Bijnens, RF-based two-dimensional cardiac strain estimation: A validation study in tissue-mimicking phantom, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, Vol. 51, 1537-1546, 2004.
  • [12] F. Tournoux, C. Chan, M. D. Handshumacher, B. Salgo and S. Manzke, S. Settlemier, J. L. Guerrero, C. Cury, A. E. Weyman, M. H. Picard, Estimation of radial strain and rotation using a new algoritm based on speckle tracking, J. Am. Soc. Echocardiogr., Vol. 21, 1168-1179, 2008.
  • [13] R. Olszewski, Z. Trawiński, J. Wójcik, A. Nowicki, Mathematical and Ultrasonographic Model of the Left Ventricle: in Vitro Studies, Archives of Acoustics, Vol. 37, 4, 583-595, 2012.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-47e8f79f-e7b3-4194-8a8d-a6da62797800
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.