PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Mechanical properties and thermogravimetric analysis of PBO thin films

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: In the continued quest for high performance, high temperature, light weight materials, the research and development of poly(1,4-phenylene-cis-benzobisoxazole) or PBO polymer was a significant step. The thermal stability, stiffness, and tensile strength surpass those of many other engineering polymers. In this report, the superior mechanical properties of PBO thin film materials and the thermal characteristics of the isotropic thin films were investigated. Thermogravimetric analysis (TGA) and the Ozawa method were employed to analyze the thermal degradation kinetic parameters. Design/methodology/approach: The quasi-isotropic thin films were processed from 14 wt-% PBO dope with the molecular weight about 130,000. Mini-tensile bar specimens of dog-bone-shape were prepared for MTS testing machine. The ASTM D1708 microtensile testing was carried out at room temperature. The TGA spectra were obtained by employing Thermal Analysis (TA) TA-2050 thermogravimetric analyzer under various heating rates in nitrogen. The Ozawa method has been used for the kinetic data analysis. Findings: The results showed that PBO thin film exhibited outstanding specific tensile properties and thermal resistance. The onset of the decomposition temperature in nitrogen atmosphere was about 670°C. The temperature that corresponded to the maximum decomposition rate was around 750°C. The residual weight was still as high as 73% when heated up to 850°C. The reaction followed a first order mechanism. In addition, the activation energy (Ea ) for PBO thin film material has been estimated to be 445 kJ/mol and the frequency factor (logA) to be 25.2 min-1. Practical implications: The better understanding in PBO thin film processing and characteristics could help to advance the structure design and unique applications. Originality/value: The outstanding specific mechanical properties and excellent thermal resistance should provide great potential applications for this new class of high performance rigid rod polymers.
Rocznik
Strony
27--32
Opis fizyczny
Bibliogr. 20 poz., rys., tab., wykr.
Twórcy
autor
  • Advanced Materials Laboratory, Institute of Electro-Optical Engineering Chang Gung University, Kweisan, Taoyuan 333, Taiwan R.O.C.
autor
  • Advanced Materials Laboratory, Institute of Electro-Optical Engineering Chang Gung University, Kweisan, Taoyuan 333, Taiwan R.O.C.
Bibliografia
  • [1] S. Bourbigot and X. Flambard, Heat resistance and flammability of high performance fibres: A review, Fire and Materials, 26 (2002) 155-168.
  • [2] S. Bourbigot, X. Flambard and F. Portch, Study of the thermal degradation of high performance fibres: application to polybenzoxazole and aramid fibres, Polymer Degradation and Stability, 74 (2001) 283-290.
  • [3] R. J. Davies, M. A. Montes-Moran, C. Riekel and R. J. Young, Single fibre deformation studies of poly(p-phenylene benzobisoxazole) fibres: Part I. Dertermination of crystal modulus, Journal of Materials Science, 36 (2001) 3079-3087.
  • [4] T. Kitagawa, K. Yabuki and R. J. Young, Investigation into the relationship between processing, structure and properties for high-modulus PBO fibres. Part 1. Raman band shifts and broadening in tension and compression, Polymer, 42 (2001) 2101-2012.
  • [5] F. Larsson and L. Svensson, Carbon, polyethylene and PBO hybrid fibre composites for structural lightweight armour, Composites Part A: Applied Science and Manufacturing, 33 (2002) 221-231.
  • [6] G. M. Wu, C. H. Hung, J. H. You and S. J. Liu, Surface modification of reinforcement fibers for composites by acid treatments, Journal of Polymer Research, 11 (2004) 31-36.
  • [7] G. M. Wu and Y. T. Shyng, Surface modification and interfacial adhesion of rigid rod PBO fibre by methanesulfonic acid treatment, Composites Part A: Applied Science and Manufacturing, 35 (2004) 1291-1300.
  • [8] R. F. Kovar, Surface-treatment of PBZT and PBO ordered polymer films for improved adhesion, Annual Technical Conference Proceedings of the 53rd Annual Technical Conference, Part 2, Boston, Massachusetts, 2 (1995) 2867-2870.
  • [9] Y. K. Huang, P. H. Frings and E. Hennes, Mechanical properties of zylon/epoxy composites, Composites Part B: Engineering, 33 (2002) 109-115.
  • [10] D. B. Roitman, L. H. Tung, M. Serrano, R. A. Wessling and P. E. Pierini, Polymerization kinetics of poly(p-phenylene-cisbenzobisoxazole), Macromolecules, 26 (1993) 4045-4046.
  • [11] M. D. Salvador, V. Amigo, M. J. Vidal, A. Ribes and L. Contat, Evaluation of chemical degradation of commercial polypropylene, Journal of Materials Processing Technology, 143 (2003) 693-697.
  • [12] F. Saghir, N. Merah, Z. Khan and A. Bazoune, Modeling the combined effects of temperature and frequency on fatigue crack growth of chlorinated polyvinyl chloride (CPVC), Journal of Materials Processing Technology, 164 (2005) 1550-1553.
  • [13] L. G. Hanu, G. P. Simon, J. Mansouri, R. P. Burford and Y. B. Cheng, Development of polymer–ceramic composites for improved fire resistance, Journal of Materials Processing Technology, 153 (2004) 401-407.
  • [14] G. V. Salmoria, V. J. Gonzalez, C. H. Ahrens, V. Soldi and A. T. N. Pires, Stereolithography Somos 7110 photosensitive resin: study of curing kinetic and thermal degradation, Journal of Materials Processing Technology, 168 (2005) 164-171.
  • [15] Y. F. Liu, J. G. Gao and R. Z. Zhang, Thermal properties and stability of boron-containing phenol-formaldehyde resin formed from paraformaldehyde, Polymer Degradation and Stability, 77 (2002) 495-501.
  • [16] J. Pielichowski and K. Pielichowski, Application of thermal analysis for the investigation of polymer degradation processes, Journal of Thermal Analysis, 43 (1995) 505-508.
  • [17] M. Gogebakan and O. Uzun, Thermal stability and mechanical properties of Al-based amorphous alloys, Journal of Materials Processing Technology, 153 (2004) 829-832.
  • [18] J. D. Cooney and D. M. Wiles, Thermal degradation of poly(ethylene terephthalate): a kinetic analysis of thermoravimetric data, Journal of Applied Polymer Science, 28 (1983) 2887-2902.
  • [19] B. D. Agarwal and L. J. Broutman, Analysis and Performance of Fiber Composites, 2nd edition, John Wiley & Sons, New York 1990.
  • [20] Y. S. Cho, M. J. Shim and S. W. Kim, Thermal degradation kinetics of PE by the Kissinger equation, Materials Chemistry and Physics, 52 (1998) 94-97.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-47e4ee32-b1d0-407d-a4f3-7ad76424468b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.