PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Synthesis and characterization of AgFeO2 delafossite with non-stoichiometric silver concentration

Treść / Zawartość
Identyfikatory
Warianty tytułu
Konferencja
All-Polish Seminar on Mössbauer Spectroscopy OSSM 2016 (11th ; 19-22 June 2016 ; Radom-Turno, Poland)
Języki publikacji
EN
Abstrakty
EN
The simple co-precipitation method was used to prepare AgxFeO2 delafossite with non-stoichiometric silver concentration in the range of x = 0.05–1. The obtained material was investigated using X-ray powder diffraction and 57Fe Mössbauer spectroscopy at room temperature. The structural and hyperfine interaction parameters were recognized in relation with decreasing silver concentration. The study revealed that the delafossite structure of AgxFeO2 was maintained up to x = 0.9; as the range of silver concentration was decreased to 0.05 ≤ x ≤ 0.8, a mixture of AgFeO2, Fe2O3 or/and FeOOH was formed.
Czasopismo
Rocznik
Strony
165--170
Opis fizyczny
Bibliogr. 29 poz., rys.
Twórcy
autor
  • Institute of Electronics and Information Technology, Lublin University of Technology, 38A Nadbystrzycka Str., 20-618 Lublin, Poland, Tel.: +48 81 538 4464, Fax: +48 81 538 4312
autor
  • Institute of Electronics and Information Technology, Lublin University of Technology, 38A Nadbystrzycka Str., 20-618 Lublin, Poland, Tel.: +48 81 538 4464, Fax: +48 81 538 4312
autor
  • Department of Applied Physics, Lublin University of Technology, 36 Nadbystrzycka Str., 20-618 Lublin, Poland
autor
  • Institute of Electronics and Information Technology, Lublin University of Technology, 38A Nadbystrzycka Str., 20-618 Lublin, Poland, Tel.: +48 81 538 4464, Fax: +48 81 538 4312
Bibliografia
  • 1. Amrute, P., Larrazábal, G. O., & Mondelli, C. (2013). CuCrO2 delafossite: A stable copper catalyst for chlorine production. Angew. Chem. Int. Ed., 52, 1–5. DOI: 10.1002/anie.201304254.
  • 2. Durham, J. L., Kirshenbaum, K., Takeuchi, E. S., Marschilok, A. C., & Takeuchi, K. J. (2015). Synthetic control of composition and crystallite size of silver ferrite composites: profound electrochemistry impacts. Chem. Commun., 51, 5120–5123. DOI: 10.1039/c4cc10277k.
  • 3. Elsayed, I. A., Çavas, M., Gupta, R., Fahmy, T., Al-Ghamdi, A. A., & Yakuphanoglu, F. (2015). Photoconducting and photocapacitance properties of Al/p-CuNiO2-on-p-Si isotype heterojunction photodiode. J. Alloy. Compd., 638, 166–171. DOI: http://dx.doi.org/10.1016/j.jallcom.2015.02.212.
  • 4. Liu, Y., Gong, Y., Mellott, N. P., Wang, B., Ye, H., & Wu, Y. (2016) Luminescence of delafossite-type CuAlO2 fibers with Eu substitution for Al cations. Sci. Technol. Adv. Mater., 17, 200–209. DOI: 10.1080/14686996.2016.1172024.
  • 5. Sun, H., Yazdi, M. A. P., Sanchette, F., & Billard, A., (2016). Optoelectronic properties of delafossite structure CuCr0.93Mg0.07O2 sputter deposited coatings. J. Phys. D-Appl. Phys., 49, 185105(1-10). DOI: 10.1088/0022-3727/49/18/185105.
  • 6. Tripathi, T. S., Niemelä, J. -P., & Karppinen, M. (2015). Atomic layer deposition of transparent semiconducting oxide CuCrO2 thin fi lms. J. Mater. Chem. C, 3, 8364–8371. DOI: 10.1039/c5tc01384d.
  • 7. Yu, M., Draskovic, T. I., & Wu, Y. (2016). Cu(I)-based delafossite compounds as photocathodes in p-type dye-sensitized solar cells. Phys. Chem. Chem. Phys., 16, 5026–5033. DOI: 10.1039/c3cp55457k.
  • 8. Amrute, A. A., Łodziana, Z., Mondelli, C., Krumeich, F., & Perez-Ramirez, J. (2013). Solid-state chemistry of cuprous delafossites: Synthesis and stability aspects. Chem. Matter., 25, 4423–4435. DOI: 10.1021/cm402902m.
  • 9. Prewitt, C. T., Shannon, R. D., & Rogers, D. B. (1971). Chemistry of noble metal oxides. II. Crystal structures of PtCoO2, PdCoO2, CuFeO2, and AgFeO2. Inorg. Chem., 10, 719–723. DOI: 10.1021/ic50098a012.
  • 10. Sheets, W. C., Mugnier, E., Barnabé, A., Marks, T. J., & Poeppelmeier, K. R. (2006). Hydrothermal synthesis of delafossitetype oxides. Chem. Mater., 18, 7–20.DOI: 10.1021/cm051791c.
  • 11. Marquardt, M. M., Ashmore, N. A., & Cann, D. P. (2006). Crystal chemistry and electrical properties of the delafossite structure. Thin Solid Films, 496, 146–156. DOI: 10.1016/j.tsf.2005.08.316.
  • 12. Krause, A., & Gawryck, S. (1938). Amorphe und kristallisierte Oxydhydrate und Oxyde. XLIV. Die Umwandlung des röntgenographisch amorphen Eisen III-hydroxyds in -Fe2O3. Z. Anorg. Allg. Chem., 238, 406–412. DOI: 10.1002/zaac.19382380409.
  • 13. Krause, V. A., & Lewandowski, A. (1972). Bildung von Silberferriten aus Silberoxid- und Eisen(III) hydroxidGelen in wäßrigem Medium. Z. Anorg. Allg. Chem., 389(1), 71–74. DOI: 10.1002/zaac.19723890109.
  • 14. Shannon, R. D., Rogers, D. B., & Prewitt, C. T. (1971). Chemistry of noble metal oxides. I. Syntheses and properties of ABO2 delafossite compounds. Inorg. Chem., 10, 713–719. DOI: 10.1021/ic50098a011.
  • 15. Presniakov, I. A., Rusakov, V. S., Sobolev, A. V., Gapochka, A. M., Matsnev, M. E., & Belik, A. A. (2014). 57Fe Mössbauer study of new multiferroic AgFeO2. Hyperfine Interact., 226, 41–50. DOI: 10.1007/s10751-013-0948-9.
  • 16. Rusakov, V. S., Presniakov, I. A., Sobolev, A. V., Gapochka, A. M., Matsnev, M. E., & Belik, A. A. (2013). Spatially modulated magnetic structure of AgFeO2: Mössbauer study on 57Fe nuclei. JEPT Lett+, 98, 544–550. DOI: 10.1134/S0021364013220098.
  • 17. Terada, N., Khalyavin, D. D., Manuel, P., Tsujimoto, Y., & Belik, A. A. (2015). Magnetic ordering and ferroelectricity in multiferroic 2H-AgFeO2: Comparison between hexagonal and rhombohedral polytypes. Phys. Rev. B, 91, 094434(17). DOI: http://dx.doi.org/10.1103/PhysRevB.91.094434.
  • 18. Terada, N., Khalyavin, D. D., Manuel, P., Tsujimoto, Y., Knight, K., Radaelli, P. G., Suzuki, H. S., & Kitazawa, H. (2012). Spiral-spin-driven ferroelectricity in a multiferroic delafossite AgFeO2. Phys. Rev. Lett.,109, 097203(5pp.). DOI: http://dx.doi.org/10.1103/PhysRevLett.109.097203.
  • 19. Vasiliev, A., Volkova, O., Presniakov, I. A., Baranov, A., Demazeau, G., Broto, J. -M., Millot, M., Lepts, N., Klingeler, R., Büchner, B., Stone, M. B., & Zheludev, A. (2010). Thermodynamic properties and neutron diffraction studies of silver ferrite AgFeO2. J. Phys.-Condens. Matter, 22, 016007(6pp.). DOI: 10.1088/0953-8984/22/1/016007.
  • 20. Gong, H., Wang, Y., & Luo, Y. (2000). Nanocrystalline p-type transparent Cu–Al–O semiconductor prepared by chemical-vapor deposition with Cu(acac)2 and Al(acac)3 precursors. Appl. Phys. Lett., 76, 3959–3961.DOI: http://dx.doi.org/10.1063/1.126834.
  • 21. Tsuboi, N., Takahashi, Y., Kobayashi, S., Shimizu, H., Kato, K., & Kaneko, F. (2003). Delafossite CuAlO2 films prepared by reactive sputtering using Cu and Al targets. J. Phys. Chem. Solids, 64, 1671–1674. DOI:10.1016/S0022-3697(03)00194-X.
  • 22. Yanagi, H., Kawazoe, H., Kudo, A., Yasukawa, M.,& Hosono, H. (2000). Chemical design and thin film preparation of p-type conductive transparent oxides. J. Electroceram., 4, 407–414. DOI: 10.1023/A:1009959920435.
  • 23. Chonco, Z. H., Ferreira, A., Loyda, L., Claeys, M., & Van Steen, E. (2013). Comparing silver and cooper as promoters in Fe-based Fischer-Tropsch catalysts using delafossite as a model compound. J. Catal., 307, 283–294. DOI: http://dx.doi.org/10.1016/j.jcat.2013.08.005.
  • 24. Farley, K. E., Marschilok, A. C., Takeuchi, E. S., & Takeuchi, K. J. (2012). Synthesis and electrochemistry of silver ferrite. Electrochem. Solid State, 15(2), A23–A27. DOI: 10.1149/2.010202esl.
  • 25. Krehula, S., & Musić, S. (2013). Formation of AgFeO2, α-FeOOH, and Ag2O from mixed Fe(NO3)3-AgNO3 solutions at high pH. J. Mol. Struct., 1044,221–230. DOI: http://dx.doi.org/10.1016/j.molstruc.2012.11.012.
  • 26. Murthy, Y. L. N., Kondala Rao, T., Kasiviswanath, I. V., & Singh, R. (2010). Synthesis and characterization of nano silver ferrite composite. J. Magn. Magn. Mater., 322, 2071–2074. DOI: 10.1016/j.jmmm.2010.01.036.
  • 27. Nagarajan, R., & Tomar, N. (2009). Ultrasound assisted ambient temperature synthesis of ternary oxide AgMO2 (M = Fe, Ga). J. Solid State Chem., 182, 1283–1290. DOI: 10.1016/j.jssc.2009.01.043.
  • 28. Wang, X., Shi, Z., Yao, S., Liao, F., Ding, J., & Shao, M. (2014). Gamma ray irradiated AgFeO2 nanoparticles with enhanced gas sensor properties. J. Solid State Chem., 219, 228–231. DOI: http://dx.doi.org/10.1016/j.jssc.2014.07.024.
  • 29. Cornell, R. M., & Schwertmann, U. (1996). The iron oxides. Structure, properties, reactions, occurrence and uses. Weinheim: Wiley-Verlag Chemie.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-47dcdccd-f463-4c74-80f7-661995708406
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.