PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Dynamic reliability calculation of random structures by conditional probability method

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Reliability is sometimes computed as the likelihood of achieving an intended function in the presence of uncertainties, and this is known as dynamic reliability by the conditional probability approach. These techniques can produce incredibly accurate reliability estimates. This work uses the dynamic response spanning action Markov hypothesis for the composite random reliability problem. Two steps are needed to describe conditional probability: first, the Taylor expansion approach is used to derive a 2nd-order approximate formula for determining the dynamic reliability of the random structure. The second step is to come up with a mathematical sampling strategy based on the statistical analysis's Kriging model. The Kriging interpolation model's sampling process satisfies the nonlinear association between structural random boundaries and dynamic reliability. Consequently, the finite element results can be used immediately to anatomize the impact of random structural parameters on dynamic reliability, bypassing the arduous and time-consuming theoretical derivation. The numerical example results show that the sampling method based on the Kriging model is unconcerned about the ratio used to represent dispersion and provides extra benefits in computational verisimilitude and calculation productivity.
Rocznik
Strony
art. no. 181133
Opis fizyczny
Bibliogr. 54 poz., tab., wykr.
Twórcy
autor
  • Department of Structural Engineering,Faculty of Civil Engineering,Akademicka5,Silesian University of Technology, Poland
autor
  • Department of Structural Engineering, Faculty of Civil Engineering, Doctoral School, Akademicka 2, Silesian University of Technology, Poland
  • Department of Civil Engineering, Sir Syed University of Engineering and Technology, Pakistan
  • Department of Civil Engineering, Shanghai Jiao Tong University, China
  • Department of Disaster Mitigation for Structures, Tongji University, China
Bibliografia
  • 1. Y. Xiang, B. Pan, L. Luo, A most-probable-point method for probability distribution construction, Struct. Multidiscip. Optim. 62 (2020) 2537–2554, https://doi. org/10.1007/s00158-020-02623-2.
  • 2. S.H. Lee, W. Chen, A comparative study of uncertainty propagation methods for black-box-type problems, Struct. Multidiscip. Optim. 37 (2009) 239–253, https://doi.org/10.1007/s00158-008-0234-7.
  • 3. Chojaczyk AA, Teixeira AP, Neves LC, Cardoso JB, Guedes SC (2015) Review and application of artificial neural networks modelsin reliability analysis of steel structures. Struct Saf 52:78–89. https://doi. org/10.1016/j.strusafe.2014.09.002.
  • 4. Mansour R, Zhu J, Edgren M, Barsoum Z (2019a) A probabilistic model of weld penetration depth based on process parameters. Int J Adv Manuf Technol 105:499–514. https://doi.org/10.1007/s00170-019-04110-5
  • 5. Hultgren G, Mansour R, Barsoum Z, Olsson M (2021a) Fatigue probability model for AWJ-cut steel including surface roughness and residual stress. J Constr Steel Res 179:106537. https://doi.org/10.1016/j.jcsr.2021.106537
  • 6. Papadimitriou D, Mourelatos ZP, Patil S, Hu Z, Tsianika V, Geroulas V (2020) Reliability analysis of nonlinear vibratory systems under 3262 Z. Hu et al. non-Gaussian loads using a sensitivity-based propagation of moments. J Mech Des 142. https://doi.org/10.1115/1.4046070
  • 7. Sandberg D, Mansour R, Olsson M (2017) Fatigue probability assessment including aleatory and epistemic uncertainty with application to gas turbine compressor blades. Int J Fatigue 95:132–142. https:// doi.org/10.1016/j.ijfatigue.2016.10.001
  • 8. Liu Z, Zhu C, Zhu P, Chen W (2018) Reliability-based design optimization of composite battery box based on modified particle swarm optimization algorithm. Compos Struct 204:239–255. https://doi.org/10.1016/j.compstruct.2018.07.053
  • 9. Mansour R, Kulachenko A, Chen W, Olsson M (2019b) Stochastic constitutive model of isotropic thin fiber networks based on stochastic volume elements. Materials (Basel) 12:538. https://doi.org/10.3390/ma12030538
  • 10. Alzweighi M, Mansour R, Lahti J, Hirn U, Kulachenko A (2020) The influence of structural variations on the constitutive response and strain variations in thin fibrous materials. Acta Mater. https://doi.org/10.1016/j.actamat.2020.11.003
  • 11. Au Siu-Kui, Beck James L. Estimation of small failure probabilities in high dimensions by subset simulation. Probabilistic Eng Mech 2001;16(4):263–77. https://doi.org/10.1016/S0266-8920(01)00019-4
  • 12. Papaioannou Iason, Papadimitriou Costas, Straub Daniel. Sequential importance sampling for structural reliability analysis. Struct Saf 2016;62:66–75. https://doi.org/10.1016/j.strusafe.2016.06.002
  • 13. Shayanfar Mohsen Ali, Barkhordari Mohammad Ali, Barkhori Moien, Barkhori Mohammad. An adaptive directional importance sampling method for structural reliability analysis. Struct Saf 2018;70:14–20. https://doi.org/10.1016/j.strusafe.2017.07.006
  • 14. Hasofer Abraham M, Lind Niels C. Exact and invariant second-moment code format. J Eng Mech Div 1974;100(1):111–21. https://doi.org/10.1061/JMCEA3.0001848
  • 15. Wang Jinsheng, Aldosary Muhannad, Cen Song, Li Chenfeng. Hermite polynomial normal transformation for structural reliability analysis. Eng Comput 2020. https://doi.org/10.1108/EC-05-2020-0244 https://doi.org/10.1108/EC-05-2020-0244
  • 16. Der Kiureghian Armen, Lin Hong-Zong, Hwang Shyh-Jiann. Second-order reliability approximations. J Eng Mech 1987;113(8):1208–25. https://doi.org/10.1061/(ASCE)0733-9399(1987)113:8(1208)
  • 17. Hu Zhangli, Mansour Rami, Olsson Mårten, Du Xiaoping. Second-order reliability methods: a review and comparative study. Struct Multidiscip Optim 2021;64(6):3233–63
  • 18. Liu C, Pan R, Deng X, Xie H, Liu J, Wang X. Random vibration and structural reliability of composite hyperbolic–parabolic membrane structures under wind load. Thin-Walled Struct 2022;180:109878. http://dx.doi.org/10.1016/j.tws.2022.109878.
  • 19. Qu W, Zhang H, Li W, Peng L. Dynamic characteristics of a hydraulic curved pipe subjected to random vibration. Int J Press Vessels Pip 2021;193:104442. http://dx.doi.org/10.1016/j.ijpvp.2021.104442.
  • 20. You T, Zhou J, Gong D, Sun Y, Li B, Chen J. Synthesis of random vibration environment spectra for the fatigue analysis and optimization of railway vehicles. Int J Fatigue 2022;159:106752. http://dx.doi.org/10.1016/j.ijfatigue.2022.106752.
  • 21. Lu F, Gao Q, Lin J, Williams F. Non-stationary random ground vibration due to loads moving along a railway track. J Sound Vib 2006;298(1):30–42. http://dx.doi.org/10.1016/j.jsv.2006.04.041.
  • 22. Liu T, Liang W, Wang Q, Qin B, Guo C, Wang A. Random vibration study of functionally graded porous curved beams with elastically restrained ends. Eng Struct 2022;270:114874. http://dx.doi.org/10.1016/j.engstruct.2022.114874.
  • 23. Liu T, Liang W, Wang Q, Qin B, Guo C, Wang A. Random vibration study of functionally graded porous curved beams with elastically restrained ends. Eng Struct 2022;270:114874. http://dx.doi.org/10.1016/j.engstruct.2022.114874.
  • 24. Al-Bahkali EA, Elkenani H, Souli M. 6 -failure and fatigue life due to random vibration in aircraft applications. In: Moatamedi M, Rahulan T, Khawaja H, editors. Multiphysics simulations in automotive and aerospace applications. Multiphysics: Advances andapplications, Academic Press; 2021, p. 131–54. http://dx.doi.org/10.1016/B978-0-12-817899-7.00009-5.
  • 25. Ma M, Yao W, Jiang W, Jin W, Chen Y, Li P, Huang J. Fatigue of composite honeycomb sandwich panels under random vibration load. Compos Struct 2022;286:115296. http://dx.doi.org/10.1016/j.compstruct.2022.115296.
  • 26. Nobakhti A, Raissi S, Damghani KK, Soltani R. Dynamic reliability assessment of a complex recovery system using fault tree, fuzzy inference and discrete event simulation. Eksploatacja i Niezawodność – Maintenance and Reliability. 2021;23(4):593-604. https://doi.org/10.17531/ein.2021.4.1
  • 27. Pourhassan Mohammad Reza, Raissi Sadigh, Hafezalkotob Ashkan. A simulation approach on reliability assessment of complex system subject to stochastic degradation and random shock. Eksploatacja i Niezawodnosc -Maintenance and Reliability 2020; 22 (2): 370-379, https://doi.org/10.17531/ein.2020.2.20.
  • 28. Pietrusiak D. Evaluation of large-scale load-carrying structures of machines with the application of the dynamic effects factor. Eksploatacja i Niezawodnosc -Maintenance and Reliability 2017; 19(4) :542-551, https://doi.org/10.17531/ein.2017.4.7.
  • 29. Singhal A, Kiremidjian AS. Method for probabilistic evaluation of seismic structural damage. J Struct Eng 1996;122(12):1459–67. https://doi.org/10.1061/(ASCE)0733-9445(1996)122:12(1459)
  • 30. Akbar M, Ali A, Pan H, Seismic Analysis of Lateral Force Resisting Steel Frame with Honeycombed Steel Thin Plate Shear Wall. DOI https://doi.org/10.21595/jve.2021.22171
  • 31. Cornell CA, Member, ASCE, Jalayer F, Hamburger RO, Member, et al. The probabilistic basis for the 2000 SAC/FEMA steel moment frame guidelines. J Struct Eng 2002;128(4):526–33 https://doi.org/10.1061/(ASCE)0733-9445(2002)128:4(526)
  • 32. Vamvatsikos D, Cornell CA. Incremental dynamic analysis. Earthq Eng Struct Dyn 2002;31(3):491–514. https://doi.org/10.1002/eqe.141
  • 33. Iscioglu F, Kocak A. Dynamic reliability analysis of a multi-state manufacturing system. Eksploatacja i Niezawodność – Maintenance and Reliability. 2019;21(3):451-459. https://doi.org/10.17531/ein.2019.3.11
  • 34. Jeong S-H, Elnashai AS. Probabilistic fragility analysis parameterized by fundamental response quantities. Eng Struct 2007;29(6):1238–51. https://doi.org/10.1016/j.engstruct.2006.06.026
  • 35. Ioanna Ioannou REC, Rossetto T. Empirical fragility curves: The effect of uncertainty in ground motion intensity. Soil Dyn Earthq Eng 2020;129:105908.
  • 36. Akbar M, Pan H, Ou G, The seismic analysis and performance of steel frame with additional low-yield point steel dampers. Journal of Vibroengineering. https://doi.org/10.21595/jve.2020.21531.
  • 37. Román-De La Sancha A, Mayoral J, Hutchinson T, Candia G, Montgomery J, Tepalcapa S. Assessment of fragility models based on the Sept 19th, 2017 earthquake observed damage. Soil Dyn Earthq Eng 2019;125:105707.
  • 38. Wang Y, Xie M, Su C. Dynamic reliability evaluation of buried corroded pipeline under rockfall impact. Eksploatacja i Niezawodność – Maintenance and Reliability. 2022;24(2):275-288. https://doi.org/10.17531/ein.2022.2.9
  • 39. Papadimitriou C, Katafygiotis LS, Beck J L. Approximate analysis of response variability of uncertain linear systems [J]. Probabilistic Engineering Mechanics, 1995, 10(4): 251―264.https://doi.org/10.1016/0266-8920(95)00020-8
  • 40. Baroth J, Bode L, Bressolette P, et al. SFE method using Hermite polynomials: An approach for solving nonlinear mechanical problems with uncertain parameters [J]. Computer Methods in Applied Mechanics and Structures, 1978, 9(5): 489-494.
  • 41. Spencer BF, Elishakoff I. Reliability of linear uncertain and nonlinear systems[J]. Journal of Engineering Mechanics, 1988, 114(1): 135―149.https://doi.org/10.1061/(ASCE)0733-9399(1988)114:1(135)
  • 42. Zhao YG, Ono T, Idota H. Response uncertainty and time-variant reliability analysis for hysteretic MDF structures [J]. Earthquake Engineering and Structural Dynamics, 1999, 28(10): 1187―1213. https://doi.org/10.1002/(SICI)1096-9845(199910)28:10%3C1187::AID-EQE863%3E3.0.CO;2-E
  • 43. Abhijit C, Subrata C. Reliability of linear structures with parameter uncertainty under non-stationary earthquake[J]. Structural Safety, 2006, 28(3): 231―246. https://doi.org/10.1016/j.strusafe.2005.07.001
  • 44. Chaudhuri A, Chakraborty S. Reliability of linear structures with parameter uncertainty under nonstationary earthquake [J]. Structural Safety, 2006, 28(3):231―246. https://doi.org/10.1016/j.strusafe.2005.07.001
  • 45. Wan L, Jiang K, Zeng Q, Gao K. Dynamic response and reliability analysis of shearer drum cutting performance in coal mining process. Eksploatacja i Niezawodność – Maintenance and Reliability. 2022;24(1):123-129. https://doi.org/10.17531/ein.2022.1.14
  • 46. Li, Zhian, et al. "A Semi-Parallel Active Learning Method Based on Kriging for Structural Reliability Analysis."Applied Sciences13.2 (2023): 1036. https://doi.org/10.3390/app13021036
  • 47. Echard, B., Gayton, N., Lemaire, M., & Relun, N. (2013). A combined importance sampling and kriging reliability method for small failure probabilities with time-demanding numerical models.Reliability Engineering & System Safety,111, 232-240. https://doi.org/10.1016/j.ress.2012.10.008
  • 48. Echard, B., Gayton, N., & Lemaire, M. (2011). AK-MCS: an active learning reliability method combining Kriging and Monte Carlo simulation.Structural Safety,33(2), 145-154. https://doi.org/10.1016/j.strusafe.2011.01.002
  • 49. Lelièvre, Nicolas, et al. "AK-MCSi: A Kriging-based method to deal with small failure probabilities and time-consuming models."Structural Safety73 (2018): 1-11. https://doi.org/10.1016/j.strusafe.2018.01.002
  • 50. Guo, Qing, et al. "An active learning Kriging model combined with directional importance sampling method for efficient reliability analysis."Probabilistic Engineering Mechanics60 (2020): 103054.
  • 51. Shi, Yan, and Zhenzhou Lu. "Dynamic reliability analysis model for structure with both random and interval uncertainties."International Journal of Mechanics and Materials in Design15 (2019): 521-537.
  • 52. Du, X., Sudjianto, A., and Huang, B. (February 9, 2005). "Reliability-Based Design With the Mixture of Random and Interval Variables." ASME.J. Mech. Des. November 2005; 127(6): 1068–1076. https://doi.org/10.1115/1.1992510
  • 53. Hu, Zhangli, et al. "Second-order reliability methods: a review and comparative study."Structural and Multidisciplinary Optimization(2021): 1-31.
  • 54. Sacks J, Schiller SB, Welch W J. Designs for computer experiments [J]. Technometics, 1989, 31(1): 41―47. https://doi.org/10.1080/00401706.1989.10488474
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-47d9a678-c396-4704-9af9-7a00005b85c5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.