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ABSTRACT 

The Dirac equation consistent with the principles of quantum mechanics and the special theory 

of relativity, introduces a set of matrices combined with the wave function of a particle in motion to 

give rise to the relativistic energy-momentum relation. In this paper a new hypothesis, the wave 

function of a particle in motion is associated with a pair of complementary waves is proposed. This 

hypothesis gives rise to the same relativistic energy-momentum relation and achieves results identical 

to those of Dirac. Additionally, both the energy-time and momentum-position uncertainty relations 

are derived from the complementary wave interpretation. How the complementary wave interpretation 

of the Dirac equation is related to the time-arrow and the four-vectors are also presented. 

 

Keywords: The Dirac equation, energy-momentum equation, complementary waves, uncertainty 

relation, time-arrow, four-vector. 

 

 

 

1.  INTRODUCTION 

 

Since the introduction of the quantum mechanics in 1927, there have been two difficult 

problems associated with the physical theory. The first question was, and still is, whether one 

should be satisfied with the probabilistic interpretation of quantum mechanics. The second 

question is whether the probabilistic interpretation which is inherent in the present form of 

quantum mechanics can accommodate special relativity. As it stands, this is understood to be 

one of the biggest inconsistencies between relativity and quantum mechanics. Relativistic 

wave-equations describe particles as waves, or more generally quantum energy fields which 

fluctuate like waves. The failure of classical mechanics to explain atomic phenomena gave 

rise to the need for a new mechanics, later termed quantum mechanics. The quantum 

revolution started in 1900 when Max Planck showed [1] how the black-body radiation 

problem can be resolved, by assuming the radiation energy coming out of a black-body was 

quantized. Einstein was then instrumental in explaining the photoelectric effect [2], stating 

that light energy comes in the form of discrete quanta. Later De-Broglie, Bohr, Schrodinger, 

Heisenberg, Pauli and Dirac were instrumental in developing the mathematical formulation of 

quantum mechanics.  
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In non-relativistic quantum mechanics the correspondence principle dictates that the 

momentum operator is associated with the spatial gradient, and the energy operator with the 

time derivative. Since four momentum ( / , )P E c  p  transforms like a 4-vector under 

Lorentz transformations, the operator, ˆ ( 0,1,2,3)P i      is relativistically covariant.  

Non-relativistic Schrödinger equation is obtained by quantizing the classical Hamiltonian 

 
2

2 .
2

i V
t m


 


   


  (1) 

 

Schrödinger equation cannot be relativistically correct, as it does not contain space and 

time derivatives of the same order. Therefore it is impossible to “mix” the space-time 

coordinates in the manner required by relativity, and end up with the same equation as one 

started with. Historically, the first attempt to construct a relativistic version of the 

Schrödinger equation began by applying the familiar quantization rules to the relativistic 

energy-momentum invariant :P P   

 
2 2 2 2 2/P P E c p m c

     (2) 

 

leading to a quadratic relation known as the Klein-Gordon equation: 

 

 2 2 2 2 2 2 4 .t c m c        (3) 

 

As the Klein-Gordon equation is quadratic in nature, it predicts negative energies and 

negative probabilities. Motivated by Schrodinger’s wave equation and Heisenberg’s matrix 

mechanics, it was Dirac who first sought to formulate a relativistic wave equation applicable 

for particles at relativistic speeds, such as electrons. As it turned out, any solution to the Dirac 

equation was automatically a solution to the Klein-Gordon equation, but the converse was not 

true. Starting with Schrodinger equation, Dirac introduced a set of non-commuting matrices 
( 1,2,3)j j   and β and formulated the Dirac equation [3]:

  
 

   2 2j j

j jc p mc i c mc E              (4) 

 

             where     2

4 and , 2 ; , 0 .i j i

ijI i          

 

Soon after Dirac formulated his relativistic wave equation in 1928, he attempted to 

explain the unavoidable negative-energy solution for the relativistic electron [4] but Robert 

Oppenheimer strongly argued against the proton being the negative solution to the Dirac 

equation. But Dirac then published a paper in 1931 [5] deducing the existence of an “anti-

electron” later termed as the positron and in 1932 Carl Anderson discovered the predicted 

positrons [6]. The Dirac equation is now known to apply for all massive spin half fermions in 

relativistic limits.  

As the Dirac equation was not sufficient to incorporate particles with arbitrary spin, 

other equations were proposed such as the Majorana equation [7], Rarita-Schwinger equation 

[8], Proca-equation [9], Bhabha-equation [10] and Bargmann-Wigner equation [11]. A 
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detailed account of their work is found in a paper entitled: “Searching for an Equation: 

Dirac, Majorana and the Others” [12]. Since then, various theorists did further research in 

relativistic Hamiltonians for particles with higher-spins [13-15]. Although the Dirac equation 

is considered as the generally accepted relativistic wave interpretation for relativistic 

particles, there were few other interpretations to the Dirac equation without using spinors. In 

1967, Hestenes proposed an alternative proposal based on the space-time Clifford algebra 

[16], which uses four-vectors forming the basis of the space-time, instead of four- matrices 

[17].  

In this paper, a new hypothesis that a particle in motion is associated with a pair of 

complementary waves is presented. This concept gives rise to the same relativistic energy-

momentum relation and achieves results identical to those of Dirac. In this representation, the 

components of the relativistic energy-momentum relation are observed energy quantities 

arising from the proposed complementary waves. Taking the inner product of the proposed 

complementary wave interpretation of the Dirac equation, the conventional four vectors are 

obtained. An exact solution of the complementary wave interpretation is presented and the 

energy-time and momentum-position uncertainty relations were derived. A relationship 

between the complementary wave interpretation of the Dirac equation and the time-arrow is 

obtained, dictating how events unfold in the real world. The present paper is an effort to 

represent the Dirac equation in accordance with both the energy-time and momentum-

position uncertainty relations and thereby to give a simplified description of elementary 

particles, consistent with both the principles of quantum mechanics and the theory of special 

relativity. 

 

 

2.  COMPLEMENTARY WAVE INTERPRITATION OF THE DIRAC EQUATION  
 

The Schrodinger equation for a particle in motion is associated with a single-

component wave function. Therefore, to make it comply with the relativistic energy-

momentum relation, Dirac introduced a set of matrices matrices j  and β and formulated the 

Dirac equation. Here, instead of combining the matrices j and β to a single normalized 

wave function ( , )t r , the matrices j and β are combined to a pair of normalized 

complementary waves 0 and 1  such that: 

 

 2

0 1 1,2,3 .j

jE mc p c j         (5) 

 

By taking the inner-product of equation 5: 

 
2 2

0 1 0 1

j j

j jE E mc p c mc p c              (6) 

we obtain, 

   2 2 4 2 2 2 3 2

0 0 1 1 0 1 1 0 1 1

1
( ) .

2

j j j i j j i

j j i jE m c p c mc p p p c                           

(7) 

 

where i and j are distinct. Using the anti-commutative properties of the Dirac matrices given 

in equation 4 and the normalized properties of the wave functions, equation 7 reads, 
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 2 2 4 2 2 3

0 1 1 0 .j

jE m c p c mc p          (8) 

 

As 0  and 1  are a complementary wave pair, 
3 3

0 1 1 0

R R

d r d r       : 

0 1 1 0    .  (9) 

 

Therefore, in order to obtain the energy-momentum relation, equation 8 has to be 

integrated and averaged over the periodic temporal interval T : 

 

   2 2 4 2 2 3

0 1 1 0

0 0 0

1 1 1
(10)

T T T

j

jE dt m c p c dt mc p dt
T T T

         
 

 

where the periodic temporal interval T representing the orthogonal periodic interval between 

the two complementary waves, satisfy the orthogonal condition:  

 

3

0 1 0 1 1 0

0 0 0

0

T T T

dt dt d r dt     






       (11) 

 

then, equation 10 leads to,  

 
2 2 2 2 4E p c m c  . (12) 

 

As the relativistic energy-momentum relation can be obtained by associating a pair of 

complementary waves 0  and 1
 
to a particle in motion, a complementary wave 

interpretation to the Dirac equation is obtained.  

 

 

3.  FOUR VECTORS ASSOCIATED WITH COMPLEMENTARY WAVES 

 

In the theory of relativity, a four-vector  0,1,2,3A  
 
is a four dimensional vector in 

Minkowski spacetime, defined as a quantity which transform under Lorentz transformation in 

the same way as coordinates of a point  0 1 2 3, , ,x x x x  giving rise to a scalar product A A



which is invariant under Lorentz transformation. However, in the complementary wave 

interpretation, the momentum-energy and the rest-energy components are associated with a 

pair of complementary waves. Thereby introducing total energy as 2mc , where the Lorentz 

factor 2 2(1 / )u c    is given in terms of the velocity of the particle u, equation 5 reads: 

 

   2 2

0 1 0 1

j j

j jmc mc p c mc c u                (13) 

 

   0 1

j

jc c u         .  (14) 
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Taking the inner-product of equation 14 and averaging over a periodic temporal 

interval T, the properties of Dirac matrices give: 

 

2 2 2 2 2

0 1 0 1

0 0

1 1
T T

j j

j jc c dt c u c u dt c c u
T T

                   
  

(15)
 

 

Since the proper time /d dt  , equation 15:  

 

         
2 2 2 2 2 2 2 2 2cdt cd udt cd cdt dx dy dz dS          

 

                    
 2 , , ,dS dX dX dX dX dX cdt dx dy dz   

                    (16) 

 

where the diagonal terms of the metric tensor  are (1, 1, 1, 1)   . This leads to the 

conventional four-position vector    0 1 2 3, , , ,X ct x x x x  r  in Minkowskian spacetime. 

Similarly staring from the complementary interpretation of the Dirac equation four velocity 

 / ,U dX d c     u , four momentum  / ,P mU E c   p  and using De-Broglie’s 

matter-wave hypothesis[18], four wave vector  / / ,K P c    k can be obtained.  

As 0 and 1  are a complementary wave pair, equation 13 suggests that the physical 

quantity 2mc or its derivatives in four-vector notation , , / , /ct c E c c   of a particle in 

motion are associated with two complementary states and that any two physical quantities 

associated with the complementary states cannot be measured with arbitrary precision. For 

instance, one cannot know both the position associated with the rest-energy and the 

momentum associated with the momentum-energy of a particle in motion, simultaneously 

with absolute precision. This we identify as the Heisenberg’s uncertainty principle. Further, 

as the total energy 2mc  of a particle in motion is associated with two complementary states: 

i.e. rest-state associated with the rest-energy and momentum-state associated with the 

momentum-energy, the complementary wave interpretation suggests that the particle motion 

is a quantized phenomena. 

 

 

4.  EXACT SOLUTION OF THE COMPLEMENTARY WAVE INTERPRITATION  
 

The inner product of four momentum P and four position vector X  , 

 

   2/ , , .P X E c ct Et mc

      p r p r  (17) 

 

Applying  E  , and p k : 

 

0 t    k r  (18) 
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Considering a plane wave solution which combines,  0 and
i ti

e e
     k r

 and applying 

the four dimensional derivative operator, 
1 d

c d





  where 

1
,

c t


 
   

 
 , 

 

         0 0

0

01 i t i t i ti i j

j

id i
e e e e i k e

c d c c

     



 
  



         
     

k r k r k r
   (19)

   

 Since 0 , j j      multiplying by c , the above equation can be rearranged to read, 

  
   02 2

0 1 .
i t i ti j j

j jEe mc e p ce E mc p c
        

     
    

k r k r
 (20) 

 

Equation 20 leads to Dirac equation, since with 0 1   
 
from equation 18. 

 

 2 1,2,3 .j

jE mc p c j        (21)
 

However, there are eight possible ways, the two waves  0 and
i ti

e e
     k r

 can be 

combined with the four derivative operator i.e. 

  

   
         0 0

1 1
;

i t i ti id d
e e e e

c d c d

     

  
 

     
     

k r k r
 (22) 

 

         0 0
1 1

;
i t i ti id d

e ie e ie
c d c d

     

  
 

     
     

k r k r
 (23) 

 

But only the waves given in equations 23 are orthogonal and out of them only the two sets of 

waves given by 

 

    0
1 i tid

e ie
c d

  




  
  

k r
 (24) 

 

satisfy the conditions given in equation 9 and 11. These two solutions can be further 

generalized as, 

 

0 1i    .  (25) 

 

where the two waves in each solution form a complementary wave-pair. From equation 24, 

the following wave-equations can be obtained:  

 
   02i t i ti j

jEe i mc e p ce
   

     
  

k r k r
   (26) 

 

As both these equations give the energy-momentum relation, equation 26 represents the 

generalized complementary wave interpretation. From the plane wave solutions given in 

equation 25, the following inner products can be obtained: 
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   3

0 1 1 0 0 0 0 0 02 cos2d r i i i                
    (27) 

 

   3

0 1 1 0 0 0 0 0 02sin 2 .d r i i               
   (28) 

 

 

5.  ENERGY-TIME UNCERTAINITY RELATION  

 

The total energy of a particle obtained by averaging over the orthogonal periodic 

temporal interval T in equation 12 is given by, 

 

2 E h
T

T E


     .  (29) 

 

Therefore to obtain the total energy of a particle, the terms in equation 8 must be integrated 

and averaged, over an observed or the measured time period measureT  which must be an 

integer multiple of its orthogonal period ',T  

 

 0 1 1 0

0

0
measureT

dt   



   

 

  (30) 

 

That is, the observed or the measured time period  'measureT nT  where n is a positive 

integer, so that the measurement is certain and complete. From equation 18 and 27  

 

 0 1 1 0 02 cos2 2 cos 2 2i i t            k r          (31) 

 

Thus the orthogonality condition in coordinate-time frame given in equation 31 can be 

obtained when ' / 2T T so that the measurement of E is certain and complete.  

 

 
2 2

measure

measure

h nh nh
E E T

T T
    


. (32) 

  

This relation implies that for a given period of measurement measureT , there exists a 

minimum energy quantum that can be measured, without any uncertainty, for at least one 

cycle of its periodic wave ( 1)n  . Further, it shows that the minimum uncertainty of the 

energy measurement for a given measureT time period is, 

 

 
min 2 measure

h
E

T
 


  (33) 

 

           
         

min
.

2
measure

h
E T E T E T          (34) 
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Equation 34 gives the energy-time uncertainty relation, arising from the complementary 

wave interpretation. However, as for the interpretation given for uncertainty principles in 

quantum mechanics, the two observables must arise from two operators which satisfy the 

canonical-commutation rule. As time  T is not considered a quantum mechanical operator, 

there is some confusion with regards to the energy-time uncertainty relation in quantum 

mechanics. Nevertheless, in 1945, Mandelshtam and Tamm derived a non-relativistic energy-

time uncertainty [19] for a quantum system in a stationary state, taking into account the life-

time of the state to change its expectation value, appreciably.  

However, the confusion related to time, not being considered a quantum mechanical 

operator does not arise, since the observables in the energy-time uncertainty relation are 

related to a set of complementary waves and their period. Further, the complementary wave 

interpretation shows that the energy-time uncertainty relation is not a statement related to the 

observer-effect or the measurement-disturbance based on the precision of the measurement 

but a fundamental statement arising from the complementary nature of momentum-energy 

and rest-energy waves associated with a particle in motion.  

 

  

6.  MOMENTUM-POSITION UNCERTAINITY PRINCIPLE 

 

As 0  and 1  are a complementary wave pair, any of the two physical quantities 

associated with them cannot be measured with arbitrary precision, in accordance with the 

uncertainty principle. For instance, one cannot know both the position (rest-energy) and the 

momentum (momentum-energy) of a particle in motion simultaneously, with absolute 

precision. This we identify as the uncertainty principle formulated by Heisenberg [20]. For 

two canonically conjugate operators A,B i.e.,  ,A B i , the uncertainties are given by, 

 

.
2

A B    (35) 

 

If two operators 0Â and 1Â are associated with a pair of complementary waves 0  and 1

respectively, then , 

 
2

0 1 0 0 1 1
ˆ ˆ ˆˆ .j

jE mc p c A A              (36) 

 

Where 0Â and 1Â  represent the expected values of the operators 0Â and 1Â   respectively. 

 

Let       0 0 0 1 1 1
ˆ ˆ ˆ ˆ ˆˆ;f A A g A A         (37) 

 

where    0 0 0 0 1 1 1 1
ˆ ˆ ˆ ˆ ˆˆ;f A A A g A A A           . Then 

 
2 2

0 1;A f f A g g    . (38) 
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From Cauchy-Schwartz inequality: 

 
2 22 2

0 1f f g g f g A A f g       (39) 

 

f g  in general is a complex number say c. Therefore , 

 

       
2 22 2 21 1

4 4
f g c c c c c c f g g f f g g f             

    
    

(40) 

 

   0 0 0 1 1 1

0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

ˆ ˆ ˆ ˆ ˆˆ

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ

f g A A A A

f g A A A A A A A A

   

           

  

   

 

 

0 0 1 1 0 0 1 1
ˆ ˆ ˆ ˆ ˆˆ .f g A A A A        (41) 

 

1 1 0 0 1 1 0 0
ˆ ˆ ˆ ˆ ˆˆ .g f A A A A        (42) 

 

Adding equations 41 and 42, 

 

   0 0 1 1 0 0 1 1
ˆ ˆ, , .f g g f A A A A         (43) 

As there is no linear correlation between 0
ˆ A  and 1

ˆˆ A  the correlation coefficient 

between them is zero: 

 

        
0 1

0 0 0 1 1 1 0 0 1 1 0 0 1 1

0 1 0 1

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆˆ, ˆ, ,
0

2 2
A A

A A A A A A A A
CC

A A A A
 

           
  

   

 

 

f g g f  0.  (44) 

 

Therefore equation 40 reads: 

 

      0 1

1

2 2

i
A A f g g f f g g f          (45) 

 

as  f g g f is complex. Subtracting equation 43 from 42 and using    : 

  

   
   0 1 0 1 1 0 0 1 0 1 1 0

ˆ ˆf g g f A A A A                 (46) 
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From equation 27 and 28, 

 

   0 1 0 0 1 0
ˆ ˆ 2sin 2 2 cos2f g g f A A A A i         

 

 
2 2 2 2 2

0 14 1 .f g g f A A       (47) 

 

By setting 0 1     in equation (46), the same result represented in equation 47 can 

be obtained from the Dirac-equation without introducing complementary waves. Equation 47 

in terms 45, 

 

   
2 2

0 1 0 14 .A A A A     (48) 

 

Bohr’s quantum-rule for angular momentum for an electron is an integer multiple of  

interpreted by de Broglie as a standing wave condition. That is the electron, described by a 

wave and a whole number of wave-lengths must fit along the circumference of the electron’s 

orbit, giving rise to the condition: 

 

31
2 2

( ,1, ,2,....)
2

n
r n n




     (49) 

 

where n represents half-wave lengths.  

Position of a particle is associated with its rest-energy component whereas its 

momentum is associated with its momentum-energy component. As the two waves 0 and 1

are a complementary wave pair, the physical quantities associated with them must be 

complementary and temporally orthogonal to each other’s as well. In the case of an electron, 

its position (equation 49) is associated with 0  whereas its momentum (p) is associated with 

1 .  

Therefore, 

 

0 0 0 0 0 1 1 1 1 1 1
ˆ ˆ ˆ ˆ; .

2

n h
A A A A p      

 
      (50) 

 

Taking the minimum value of 1/ 2n  , equation  41 reads: 

 

  0 1 .
2

A A n     (51) 

 

In the present approach a pair of complementary waves was introduced instead of 

introducing two operators which satisfy the canonical-commutation rule. Hence the result 

obtained by using two canonically conjugate operators on a single component wave function 

and the wave function of a particle in motion associated with a pair of complementary waves 

are the same.  
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7.  TIME ARROW  

 

The laws of physics that have been articulated from Newton through Maxwell and 

Einstein, and up until today, show a complete symmetry between past and the future. 

Nowhere is there any distinction between how the laws look or behave when applied in either 

direction of time. The laws treat what we call past and future on a completely equal footing. 

Even though experience reveals over and over again that there is an arrow of how events 

unfold in time, this arrow is not found in the fundamental laws of physics [21]. In fact, the 

only law which shows a time direction in contemporary physics is the second law of 

thermodynamics, where real world phenomena proceed in the direction of increasing entropy. 

However, all other laws of physics do not seem to require this time arrow.  

 In the complementary wave interpretation, the complementary wave-pair has a fixed 

temporal relation between the waves, 0 and 1,
 
i.e. one wave always leads the other. 

Therefore, one can immediately observe that the temporal relation between two 

complementary waves would exhibit an anti-symmetry, if the time direction is reversed, i.e. if 

0  leads 1
 
in the positive time direction, then 1

 
would lead 0 when the time direction is 

reversed. This we identify as a possible explanation for the existence of a time-arrow, which 

determines how events unfold in time. 

For instance, the non-relativistic hydrogen spectral series is obtained by using the 

Schrodinger equation, treating the electron in the hydrogen atom as a single-component wave 

function: 

 
2 2

2

0

.
2 4

e
E

m r
  


      (52) 

 

This can be alternatively achieved by interpreting the wave function to be associated 

with a pair of complementary waves,  the kinetic-energy component given by the momentum 

of the particle, associated with the 1  and the static potential energy component associated 

with the wave 0 which are temporally related,  

 
2 2

2

1 0

0

.
2 4

e
E

m r
  


     (53) 

 

However, in contrast to the single-component Schrodinger equation, this treatment 

exhibits an anti-symmetrical temporal relation for the evolution of the hydrogen atom’s wave 

function and dictates a time-arrow. 

 

 

8.  CONCLUSIONS 

 

The concept that the wave function of a particle in relativistic motion is associated with 

a pair of complementary waves was presented interpreting the Dirac equation in terms of 

complementary waves. Additionally, the two energy components in Einstein’s energy-

momentum equation were shown to arise from the proposed complementary waves which are 

temporally orthogonal to each other. As the complementary wave pair gives rise to an 
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invariant scalar product, the conventional four-vectors were obtained. The energy-time and 

momentum-position uncertainty relations were derived from the complementary wave-

interpretation and they suggest that the observer-effect or the measurement-disturbance is not 

what determines both the energy-time and momentum-position uncertainty inequalities. That 

is, even with a set of hypothetical absolute measurements, the two uncertainty relations 

would hold true, based on the interpretation presented in this paper. Further, in accordance 

with the uncertainty principle, it suggests that any pair of physical quantities associated with 

the two complementary waves in a four-vector cannot be known simultaneously, with 

absolute precision and the motion of a particle is a quantized phenomena. A possible 

explanation to the time-arrow problem was presented by showing that the proposed 

complementary wave interpretation dictates an anti-symmetric relation, if the time direction 

is reversed. By applying the complementary wave-interpretation to the hydrogen atom’s wave 

function, a proof for the existence of its time-arrow was obtained. This may be identified as a 

possible theoretical explanation to the existence of a time arrow, other than the well-

established explanation from the second law of thermodynamics. 
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