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Abstract: Let Xu(t) be a controlled Wiener process with jumps
that are uniformly distributed over the interval [−c, c]. The aim is to
minimize the time spent by Xu(t) in the interval [a, b]. The integro-
differential equation, satisfied by the value function, is transformed
into an ordinary differential equation and is solved explicitly for a
particular case. The approximate solution obtained is precise when
c is small.
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1. Introduction

Let {Y1, Y2, . . .} be independent and identically distributed random variables
having the density function

fY (y) =
1

2c
for −c ≤ x ≤ c. (1)

That is, Yi is uniformly distributed over the interval [−c, c] for i = 1, 2, . . . We
consider the controlled jump-diffusion process {Xu(t), t ≥ 0}, defined by

Xu(t) = Xu(0) + µt+ b0

∫ t

0

u[Xu(s)]ds + σB(t) +

N(t)
∑

i=1

Yi, (2)

where µ, b0 > 0 and σ > 0 are constants, {B(t), t ≥ 0} is a standard Brownian
motion and {N(t), t ≥ 0} is a Poisson process with rate λ > 0. Hence, the
continuous part of {Xu(t), t ≥ 0} is a controlled Wiener process with infinites-
imal parameters µ and σ2. The processes {B(t), t ≥ 0} and {N(t), t ≥ 0} are
assumed to be independent.
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Next, we define the first-passage time

T (x) = inf{t ≥ 0 : Xu(t) /∈ (a, b) | Xu(0) = x ∈ [a, b]}. (3)

Our aim is to find the control that minimizes the expected value of the cost
criterion

J(x) :=

∫ T (x)

0

{

1

2
q0u

2[Xu(t)] + θ

}

dt, (4)

where q0 and θ are positive constants. Because θ > 0, the optimizer wants the
controlled process to leave the interval [a, b] as soon as possible, while taking
the quadratic control costs into account. We could try, instead, to maximize the
survival time in [a, b] by choosing θ < 0. We could also consider a risk-sensitive
version of the cost criterion.

This type of problem is known as LQG homing. Whittle (1982) has
proven that, when λ = 0, it is sometimes possible to linearize the differential
equation satisfied by the value function. Actually, in the particular problem
defined above, one can transform the stochastic control problem into a purely
probabilistic problem for the uncontrolled process X0(t), obtained by setting
u(·) ≡ 0 in (2). The optimal control u∗(x) can be expressed in terms of the
moment-generating function of the random variable T0(x) that corresponds to
T (x).

In the case of jump-diffusion processes with jumps of constant size ǫ,
Lefebvre (2014) (see also Theodorou and Todorov, 2012) has shown that, if ǫ is
small, the optimal control can again be obtained (approximately, this time) by
computing a mathematical expectation for the uncontrolled process X0(t). He
was able to solve a particular problem by making use of the results obtained
by Abundo (2000).

In the present paper, instead of linearizing the equation satisfied by the value
function, we will transform the appropriate integro-differential equation into an
(approximate) non-linear differential equation. The theoretical results will be
presented in Section 2, and a particular problem will be solved explicitly in
Section 3. We will see that the approximate solution is almost an exact one if
the constant c is small.

2. Approximate differential equation

The infinitesimal generator of the uncontrolled process {X0(t), t ≥ 0}, defined
by

X0(t) = x+ µt+ σB(t) +

N(t)
∑

i=1

Yi, (5)
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is (see Kou and Wang, 2003)

Lg(x) = 1

2
σ2 g′′(x) + µg′(x)− λg(x) + λ

∫ c

−c

g(x+ y)
1

2c
dy (6)

for x ∈ (a, b), where g(x) is a twice continuously differentiable function.
Next, we define the value function

F (x) = inf
u[Xu(t)], 0≤t≤T (x)

E[J(x)]. (7)

By making use of dynamic programming, the optimal control can be expressed
as follows:

u∗(x) = − b0
q0

F ′(x). (8)

Moreover, we can prove the following proposition, which generalizes the result
obtained in Lefebvre (2014).

Proposition 2.1 The value function, for the process defined in (2), satisfies
the second-order, non-linear integro-differential equation

0 = θ+µF ′(x)− 1

2

b20
q0

[F ′(x)]
2
+
1

2
σ2F ′′(x)+λ

∫ c

−c

[F (x+ y)− F (x)]
1

2c
dy (9)

for a < x < b. Moreover, we have the boundary conditions

F (x) = 0 if x ≤ a or x ≥ b. (10)

Now, using Taylor’s formula, we can write that

F (x+ y) = F (x) + yF ′(x) +
1

2
y2F ′′(x) + o(y2). (11)

It follows that
∫ c

−c

[F (x+ y)− F (x)]
1

2c
dy ≃ E[Y ]F ′(x) +

1

2
E[Y 2]F ′′(x). (12)

Since E[Y ] = 0 and E[Y 2] = c2/3, Eq. (9) becomes

0 ≃ θ + µF ′(x) − κ [F ′(x)]
2
+

1

2

(

σ2 +
λc2

3

)

F ′′(x), (13)

where

κ :=
1

2

b20
q0

. (14)
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Remarks. (i) Equation (13) is appropriate if x + c ≤ b and x − c ≥ a. If
x+ c > b, we can write more precisely (using the boundary condition F (x) = 0
if x ≥ b) that

0 = θ+µF ′(x)−κ [F ′(x)]
2
+
1

2
σ2F ′′(x)−λF (x)+

λ

2c

∫ b−x

−c

F (x+y)dy. (15)

Similarly, if x− c < a, we have

0 = θ+µF ′(x)−κ [F ′(x)]
2
+

1

2
σ2F ′′(x)−λF (x)+

λ

2c

∫ c

a−x

F (x+y)dy. (16)

For c large enough, we can have both x+ c > b and x− c < a.

We can still transform Eq. (15) and Eq. (16) into approximate ordinary
differential equations, but they will not be with constant coefficients, so that
they will be more difficult to solve explicitly.

(ii) Proceeding as in Whittle (1982), we can linearize the second-order differen-
tial equation (13). To do so, we define

Φ(x;α) = e−αF (x), (17)

where

α :=
b20
q0

1

σ2 + λc2

3

. (18)

However, it is also possible to solve this equation directly. Notice that Eq. (13)
is a Riccati equation for G(x) := F ′(x).

In the next section, a particular problem will be solved explicitly. We will
see that, as expected, the approximate solution is more precise when c is small.

3. A particular case

We assume that µ = 0 and b0 = q0 = λ = θ = σ = 1. Moreover, we choose the
interval [0, 1]. Equation (13) reduces to

0 ≃ 1− 1

2
[F ′(x)]

2
+

1

2

(

1 +
c2

3

)

F ′′(x). (19)

The solution that satisfies the boundary conditions F (0) = F (1) = 0 is

F (x) =
√
2x− 1

α
ln

(

e
√
2α + e2

√
2αx

e
√
2α + 1

)

, (20)

where (see Eq. (18))

α =
3

3 + c2
. (21)
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If we substitute the above expression for the function F (x) into the integro-
differential equation (see Eq. (9))

0 = 1− 1

2
[F ′(x)]

2
+

1

2
F ′′(x)− F (x) +

∫ 1−x

−x

F (x+ y)
1

2
dy (22)

(where we have used the fact that F (x) = 0 if x ≤ 0 or x ≥ 1), we obtain
that the right-hand side of the preceding equation varies from a maximum of
approximately 0.25 (at x = 0 and x = 1) to a minimum of about 0.13 (at
x = 1/2); see Fig. 1. The error is therefore not negligible.

Figure 1. Right-hand side of Eq. (22) in the interval [0, 1]

Next, with c = 1/10, for x ∈ [1/10, 9/10] we replace the function F (x) into

0 = 1− 1

2
[F ′(x)]

2
+

1

2
F ′′(x) + 5

∫ 1/10

−1/10

[F (x+ y)− F (x)] dy. (23)

The right-hand side of the above equation is shown in Fig. 2.

The maximum error is approximately equal to 6.6×10−6. Therefore, the
approximate solution is much more precise than when c = 1.

For x ∈ [0, 1/10), the integro-differential equation becomes

0 = 1− 1

2
[F ′(x)]

2
+

1

2
F ′′(x)− F (x) + 5

∫ 1/10

−x

F (x+ y)dy. (24)



412 M. Lefebvre

Figure 2. Right-hand side of Eq. (23) in the interval [1/10, 9/10]

We present in Fig. 3 the right-hand side of this equation for the function F (x)
given in (20), with α = 300/301.

The maximum error, at x = 0, is approximately 0.022. In the interval
(9/10, 1], we obtain the same results, with x replaced by 1 − x, which actually
follows by symmetry. Hence, we can conclude that the expression obtained
for the value function F (x) is acceptable when c = 1/10. The (approximate)
optimal control is shown in Fig. 4.

Remarks. (i) The solution of Eq. (13) depends on λc2. However, the right-
hand side of the integro-differential equation (9) depends on λ/c and c. The
approximate value function is much more precise for small values of c.

(ii) As mentioned in the previous section, we should actually use Eq. (13) in
the interval [a+ c, b− c]. For x ∈ (b − c, c], the appropriate integro-differential
equation is Eq. (15) (assuming that b − 2c ≥ a). When c = 1/10, we find
that this equation can be transformed into the following approximate ordinary
differential equation:

0 ≃ 1− 1

2
[F ′(x)]

2
+ 5

(

(1− x)2

2
− 1

200

)

F ′(x) (25)

+
1

2

[

1 +
5

3

(

(1− x)3 +
1

1000

)]

F ′′(x).

In theory, we should first try to solve the above equation subject to the boundary
condition F (1) = 0, and next use the general solution of Eq. (19) in the interval
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Figure 3. Right-hand side of Eq. (24) in the interval [0, 1/10)

[1/10, 9/10]. Because the function F (x) must be continuous, we can determine
the remaining arbitrary constant at x = 9/10. However, since the solution of
Eq. (19) is very precise in the interval [1/10, 9/10] when c = 1/10, we can more
simply try to solve Eq. (25) subject to the conditions F (9/10) ≃ 0.07925 (which
is the value of the solution obtained above) and F (1) = 0. The analytical
solution of Eq. (25) is very involved, but we can solve it numerically. It turns
out that the numerical solution is almost the same as the value of the solution
of Eq. (19) in the interval (9/10, 1]. Similarly, by symmetry, for x ∈ [0, 1/10).

(iii) In the general formulation of the LQG homing problems, there is a final
cost given by K[T (x), X(T (x))]. Above, we assumed that K(·, ·) ≡ 0. Suppose,
instead, that the function K is of the same form as the value function F (x)
given in Eq. (20), so that

K = K[X(T (x))] =
√
2X(T (x))− 1

α
ln

(

e
√
2α + e2

√
2αX(T (x))

e
√
2α + 1

)

. (26)

Then, the boundary condition in (10) becomes

F (x) = K(x) =
√
2x− 1

α
ln

(

e
√
2α + e2

√
2αx

e
√
2α + 1

)

(27)

if x ∈ (−1/10, 0] or x ∈ [1, 11/10]. Notice that the final cost is actually a reward
if X(T (x)) < 0 or X(T (x)) > 1. With the final cost function defined in (26),
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Figure 4. Approximate optimal control in the interval [0, 1] when c = 1/10

Eq. (23) is valid for any x ∈ [0, 1]. Moreover, we find that the right-hand side
of this equation, with the function F (x) defined in Eq. (20), is of the order of
10−6 for x ∈ [0, 1], so that the approximate control u∗(x) is then practically the
exact solution to the optimal control problem.

4. Conclusion

In this note, the LQG homing problem was considered for a controlled Wiener
process with random Poissonian jumps. The aim was to leave the interval [a, b]
as soon as possible, and the jumps were assumed to be uniformly distributed
over the interval [−c, c].

We transformed the integro-differential equation, satisfied by the value func-
tion, into an approximate non-linear ordinary differential equation of order two
with constant coefficients. This ordinary differential equation (o.d.e.) was solved
explicitly in Section 3 in the case of a controlled standard Brownian motion with
jumps. As expected, we found that the approximate solution was more precise
for small values of the constant c.

In theory, we could extend the results obtained in Section 2 to the case of
a general time-homogeneous controlled diffusion process with jumps. However,
the o.d.e. that corresponds to Eq. (13) will in general no longer be an equation
with constant coefficients. Therefore, it will probably be quite difficult to solve
this equation analytically. We could, however, at least use numerical methods
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to solve it.
Instead of a uniform distribution, we could have used, for instance, a beta

distribution, which is also bounded. In some applications, in particular in fi-
nancial mathematics, it is not realistic to assume that the jumps, especially the
negative ones, can be as large as we want (in absolute value).
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