PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Biosynthetic of Titanium Dioxide Nanoparticles Using Zizyphus Spina-Christi Leaves Extract: Properties

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The present project utilizes a straightforward, inexpensive, and environmentally friendly approach to produce Titanium dioxide nanoparticles utilizing Zizyphus Spina-Christi leaves (Z-TiO2). Ultra-Spectrophotometry (UV-Vis) was used to characterize the synthesized nanoparticles, which showed the production of nanoparticles at 320 nm absorbance. To investigate functional groups, Fourier Transform Infrared Spectroscopy (FTIR) has been used. The presence of Titanium Dioxide was verified using Energy Distribution X-ray Spectroscopy (EDS). Surface area is calculated using the Brunauer Emmett Teller (BET) formula. Images from Field Emission Electron Microscopy (FE-SEM) verified the nanoparticles' spherical shape and relatively homogenous size distribution. These findings demonstrated that the production of Z-TiO2 nanoparticles was successful.
Słowa kluczowe
Rocznik
Strony
315--324
Opis fizyczny
Bibliogr. 37 poz., rys., tab.
Twórcy
  • Department of Environmental Engineering, University of Baghdad, Baghdad, Iraq
  • Department of Environmental Engineering, University of Baghdad, Baghdad, Iraq
Bibliografia
  • 1. Ba-Abbad M.M., Kadhum A.A.H., Mohamad A.B., Takriff M.S., Jalgham R.T. 2012. Comparative study of the adsorption mechanism and photochemical oxidation of chlorophenols on a TiO2 nanocatalyst. International Journal of Electrochemical Science, 7(11), 11363–11376.
  • 2. Bozicevic A., De Mieri M., Di Benedetto A., Gafner F., Hamburger M. 2017. Dammarane-type saponins from leaves of Ziziphus Spina-Christi. Phytochemistry, 138, 134-144.
  • 3. Campanella B., Palleschi V., Legnaioli S. 2021. Introduction to vibrational spectroscopies. ChemTexts, 7(1), 1–21.
  • 4. Carlsen L., Bruggemann R., Sailaukhanuly Y. 2013. Application of selected partial order tools to analyze fate and toxicity indicators of environmentally hazardous chemicals. Ecological indicators, 29, 191–202.
  • 5. De Lasa H.I., Serrano B., Salaices M. 2005. Photocatalytic reaction engineering. New York: Springer, pp. 193.
  • 6. Dogu D., Karakas G. 2018. Photocatalytic properties and characterization of praseodymium-doped titanium dioxide. Journal of Advanced Oxidation Technologies, 21(1), 215–226.
  • 7. Francisco M.S.P., Mastelaro V.R. 2002. Inhibition of the anatase − rutile phase transformation with addition of CeO2 to CuO−TiO2 system: Raman spectroscopy, X-ray diffraction, and textural studies. Chemistry of Materials, 14(6), 2514–2518.
  • 8. Gao C., Wei T., Zhang Y., Song X., Huan Y., Liu H., ... and Chen X. 2019. A Photoresponsive Rutile TiO2 Heterojunction with Enhanced Electron–Hole Separation for High‐Performance Hydrogen Evolution. Advanced Materials, 31(8), 1806596.
  • 9. García-Serrano J., Gómez-Hernández E., OcampoFernández M., Pal U. 2009. Effect of Ag doping on the crystallization and phase transition of TiO2 nanoparticles. Current Applied Physics, 9(5), 1097–1105.
  • 10. Guan G., Ye E., You M., Li Z. 2020. Hybridized 2D nanomaterials toward highly efficient photocatalysis for degrading pollutants: current status and future perspectives. Small, 16(19), 1907087.
  • 11. Hamdan S.A., IbrahiM I.M., Ali I.M. 2020. Comparison of anatase and rutile TiO2 nanostructure for gas sensing application. Digest Journal of Nanomaterials & Biostructures (DJNB), 15(4).
  • 12. Hanaor D.A., Sorrell C.C. 2011. Review of the anatase to rutile phase transformation. Journal of Materials science, 46(4), 855–874.
  • 13. Hidalgo M.C., Aguilar M., Maicu M., Navío J.A., Colón G. 2007. Hydrothermal preparation of highly photoactive TiO2 nanoparticles. Catalysis Today, 129(1–2), 50–58.
  • 14. Hochella M.F., Mogk D.W., Ranville J., Allen I.C., Luther G.W., Marr L.C., ... and Yang Y. 2019. Natural, incidental, and engineered nanomaterials and their impacts on the Earth system. Science, 363(6434).
  • 15. Jalill A., Raghad D.H., Nuaman RS, Abd AN. 2016. Biological synthesis of Titanium Dioxide nanoparticles by Curcuma longa plant extract and study its biological properties. World Scientific News, 49(2), 204–222.
  • 16. Jing L., Li S., Song S., Xue L., Fu H. 2008 Investigation on the electron transfer between anatase and rutile in nano-sized TiO2 by means of Surface photovoltage technique and its effects on the photocatalytic activity. Solar Energy Materials and Solar Cells, 92(9), 1030–1036.
  • 17. Kamegawa T., Ishiguro Y., Yamashita H. 2019. Photocatalytic properties of TiO2-loaded porous silica with hierarchical macroporous and mesoporous architectures in the degradation of gaseous organic molecules. Catalysis Today, 332, 222–226.
  • 18. Karkare M.M. 2014. Choice of precursor not affecting the size of anatase TiO2 nanoparticles but affecting morphology under broader view. International Nano Letters, 4(3), 111.
  • 19. Kaur H., Goyal V., Singh J., Kumar S., Rawat M. 2019. Biomolecules encapsulated TiO2 nano‐cubes using Tinospora cordifolia for photodegradation of a textile dye. Micro & Nano Letters, 14(12), 1229–1232.
  • 20. Kaur H., Kaur S., Singh J., Rawat M., Kumar S. 2019. Expanding horizon: green synthesis of TiO2 nanoparticles using Carica papaya leaves for photocatalysis application. Materials Research Express, 6(9), 095034.
  • 21. Maurya I.C., Singh S., Senapati S., Srivastava P., Bahadur L. 2019. Green synthesis of TiO2 nanoparticles using Bixa Orellana seed extract and its application for solar cells. Solar Energy, 194, 952–958.
  • 22. Mohammadi R. and Sabourmoghaddam N. 2020. Adsorption of azo dye methyl orange from aqueous solutions using TiO2-SiO2/alginate nanocomposite. Asian Journal of Green Chemistry, 4(1), 107–120.
  • 23. Mohammed, N.A.A., Alwared, A.I., Salman, M.S. 2020. The decolorization of reactive yellow dye by advanced oxidation using continuous reactors. Iraqi Journal of Chemical and Petroleum Engineering, 21(2), 1-6.
  • 24. Oliva F.Y., Avalle L.B., Santos E., Cámara O.R. 2002. Photoelectrochemical characterization of nanocrystalline TiO2 films on titanium substrates. Journal of photochemistry and photobiology A. Chemistry, 46(3), 175–188.
  • 25. Parveen K., Banse V., Ledwani L. 2016. Green synthesis of nanoparticles: their advantages and disadvantages. In AIP conference proceedings, 1724(1), 020048.
  • 26. Ramalingam S. 2019. Synthesis of Nanosized Titanium Dioxide (TiO2) by Sol-Gel Method. Int. J. Innov. Technol. Explore. Eng., 2278–3075.
  • 27.Reddy K.M., Manorama S.V., Reddy A.R. 2003. Bandgap studies on anatase titanium dioxide nanoparticles. Materials Chemistry and Physics, 78(1), 239–245.
  • 28. Richardson S.D., Kimura S.Y. 2019. Water analysis: emerging contaminants and current issues. Analytical Chemistry, 2(1), 473–505.
  • 29. Sharaf El-Deen S.E., Zhang F.S. 2016. Immobilisation of TiO2-nanoparticles on sewage sludge and their adsorption for cadmium removal from aqueous solutions. Journal of experimental nanoscience, 11(4), 239–258.
  • 30. Shevah Y. 2019. Impact of Persistent Droughts on the Quality of the Middle East Water Resources. InSeparation Science and Technology. Academic Press, 11, 51–84.
  • 31. Sutrisno H., Siswani E.D., Budiasih K.S. 2018. The effect of sintering temperatures of TiO2 (B)-nanotubes on its microstructure. Science of Sintering, 50(3), 291–298.
  • 32. Suwarnkar M.B., Dhabbe R.S., Kadam A.N., Garadkar K.M. 2014. Enhanced photocatalytic activity of Ag doped TiO2 nanoparticles synthesized by a microwave assisted method. Ceramics International, 40(4), 5489–5496.
  • 33. Valencia S., Marín J.M., Restrepo G. 2009. Study of the bandgap of synthesized titanium dioxidenanoparticles using the sol-gel method and hydrothermal treatment. The Open Materials Science Journal, 4(1).
  • 34. Wang G. 2007. Hydrothermal synthesis and photocatalytic activity of nanocrystalline TiO2 powders in ethanol-water mixed solutions. Journal of Molecular Catalysis A: Chemical, 274(1–2), 185–191.
  • 35. Yu J., Wang G., Cheng B., Zhou M. 2007. Effects of hydrothermal temperature and time on the photocatalytic activity and microstructures of bimodal mesoporous TiO2 powders. Applied Catalysis B. Environmental, 69(3–4), 171–180.
  • 36. Zait Y., Konsens I., Schwartz A. 2020. Elucidating the limiting factors for regeneration and successful establishment of the thermophilic tree Ziziphus Spina-Christi under a changing climate. Scientific Reports, 10(1), 1–2.
  • 37. Zhao L., Han M., Lian J. 2008. Photocatalytic activity of TiO2 films with mixed anatase and rutile structures prepared by pulsed laser deposition. Thin Solid Films, 516(10), 3394–3398.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-47c55c7d-5d7d-4f6e-90fd-cffe03a13fb5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.