PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of Electrical Current and the External Source of Carbon on the Characteristics of Sludge from the Sequencing Batch Biofilm Reactors

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This work presents the results of an experiment on the effect of electrical current density (53, 105, 158 and 210 mA/m2), the type of an external source of carbon (citric acid, potassium bicarbonate) and C/NNO3 ratio (0.5, 1.0 and 1.5) on the quantity and quality of formed sludge. The experiment was conducted in sequencing batch biofilm reactors (SBBRs), under anaerobic conditions, with and without the passage of electrical current, under controlled pH of 7.5–8.0. The study demonstrated that in the reactors with electrical current passage and external source of carbon, the volume of sludge increased along with the current density increase from 53 to 158 mA/m2. At its highest density (210 mA/m2), the concentration of sludge was insignificantly lower. For all densities of electrical current and C/NNO3 values, the concentrations of sludge formed in the reactors with potassium bicarbonate (1.00 to 1.26 g d. m./L) were lower than in the reactors with citric acid (1.26 to 1.30 g d. m./L). The concentration of organic matter was higher in the sludge from the reactors with electrical current passage and potassium bicarbonate, compared to the sludge from the reactors with citric acid. In the reactors with electrical current passage and external source of carbon, the total nitrogen content in the sludge decreased along with the C/NNO3 ratio increase for current densities of 53 and 105 mA/m2. For a higher electrical current density, the nitrogen content in the sludge was similar. Irrespectively of the current density, the nitrogen content in the sludge from the reactors with citric acid was higher than in the sludge from the reactors with potassium bicarbonate. For higher current densities (158 and 210 mA/m2) the increase in the C/NNO3 value caused an increase in the P content in the sludge. The electrical current density increase contributed to increasing the content of phosphorus in the sludge. The phosphorus content in the sludge from the reactors with citric acid was lower than in the sludge from the reactors with potassium bicarbonate. The CST values prove that the sludge formed during the wastewater treatment in electrobiological SBBR was characterized by very high dewaterability. The capillary suction time decreased along with increasing the electrical current density but was not significantly affected by the type of carbon source.
Rocznik
Strony
143--152
Opis fizyczny
Bibliogr. 29 poz., rys.
Twórcy
  • University of Warmia and Mazury in Olsztyn, Faculty of Environmental Sciences, Department of Environment Engineering, Warszawska 117a, 10-719 Olsztyn, Poland
  • University of Warmia and Mazury in Olsztyn, Faculty of Environmental Sciences, Department of Environment Engineering, Warszawska 117a, 10-719 Olsztyn, Poland
  • University of Warmia and Mazury in Olsztyn, Faculty of Environmental Sciences, Department of Environment Engineering, Warszawska 117a, 10-719 Olsztyn, Poland
Bibliografia
  • 1. Akyol A. 2012. Treatment of paint manufacturing wastewater by electrocoagulation. Desalination, 285, 91-99.
  • 2. Attour A., Touati M., Tlili M., Ben Amor M., Lapicque F., Leclerc J.-P. 2014. Influence of operating parameters on phosphate removal from water by electrocoagulation using aluminum electrodes. Sep. Purif. Technol., 123, 124-129.
  • 3. Barbusiński K., Filipek K., 2000. Aerobic Sludge Digestion in the Presence of Chemical Oxidizing Agents Part II. Fenton’s Reagent. Pol. J. Environ. Stud., 9(3), 139-143.
  • 4. Baran S., Turski R. 1999. Selected issues in the utilization and disposal of waste (in Polish). Wyd. Akademia Rolnicza, Lublin
  • 5. Behbahani M., Moghaddam M.R.A., Arami M. 2013. Phosphate removal by electrocoagulation process: optimization by response surface methodology method. Environ. Eng. Manag. J., 12(12), 2397-2405.
  • 6. Bień J., Stępniak L., Wolny L. 1995. Ultrasounds in water disinfection and preparation of sewage sludge before dehydration (in Polish). Seria Monografie Nr. 37, Częstochowa.
  • 7. Determining the criteria for the use of sewage sludge outside agriculture (in Polish), 2004. Politechnika Częstochowska, Instytut Inżynierii Środowiska, Częstochowa 2004
  • 8. Dębowski M., Zieliński M., Krzemieniewski M. 2008. Efficiency of sewage sludge conditioning with the Fenton’s method (in Polish). Ochr. Sr., 30(2), 43-47.
  • 9. Đuričić T., Malinović B.N., Bijelić D. 2016. The phosphate removal efficiency electrocoagulation wastewater using iron and aluminum electrodes. Bulletin of the chemists and Technologists of Bosnia and Herzegovina. 47, 33-38.
  • 10. Feng H., Huang B., Zou Y., Li N., Wang M., Yin J., Cong Y., Shen D. 2013. The effect of carbon sources on nitrogen removal performance in bioelectrochemical systems. Bioresource Technol., 128, 565-570.
  • 11. Gharibi H., Sowlat M.H., Mahvi A., Keshavarz M., Safari M.H., Lotfi S., Abadi M.B., Alijanzadeh A. 2013. Performance evaluation of a bipolar electrolysis/electrocoagulation (EL/EC) reactor to enhance the sludge dewaterability. Chemosphere, 90(4), 1487-1494.
  • 12. Grady C.P.L, Daigger G.T, Lim H.C. 1999. Biological Wastewater Treatment, Second Edition, Marcel Dekker, Inc. New York, Basel.
  • 13. Janczukowicz W., Rodziewicz J. 2013. Carbon sources in the processes of biological removal of nitrogen and phosphorus compounds (in Polish). 114. Monografie Komitetu Inżynierii Środowiska PAN. Lublin.
  • 14. Karanasios K.A., Vasiliadou I.A., Pavlou S., Vayenas D.V. 2010. Hydrogenotrophic denitrification of potable water: a review. J. Hazard. Mater., 180(1-3), 20-37.
  • 15. Klaczyński E. 2013. Sewage treatment plant – chemical removal of phosphorus (in Polish). Wodociągi i Kanalizacja, 2(108), 26-28.
  • 16. Kłodowska I., Rodziewicz J., Janczukowicz W. 2014. Removal of nitrogen compounds in the process of autotrophic denitrification in a Sequencing Batch Biofilm Reactor (SBBR). Pol. J. Nat. Sci., 29(4), 359-369.
  • 17. Kłodowska I., Rodziewicz J., Janczukowicz W., Cydzik-Kwiatkowska A., Parszuto K. 2016. Effect of citric acid on the efficiency of the removal of nitrogen and phosphorus compounds during simultaneous heterotrophic-autotrophic denitrification (HAD) and electrocoagulation. Ecol. Eng., 95, 30-35.
  • 18. Kuokkanen V., Kuokkanen T., Rämö J., Lassi U., Roininen J. 2015. Removal of phosphate from wastewaters for further utilization using electrocoagulation with hybrid electrodes – Techno-economic studies. J. Water Process Eng., 8, 50-57.
  • 19. Kuokkanen V. 2016. Utilization of electrocoagulation for water and wastewater treatment and nutrient recovery, Acta Universitatis Ouluensis C, Technica, 562.
  • 20. Malej J. 2000. Properties of sewage sludge and selected methods of their neutralisation, processing and utilization (in Polish), Rocznik Ochrona Środowiska, 2, 69-101.
  • 21. Lacasa E., Caňizares P., Sáez C., Fernández F.J., Rodrigo M.A. 2011. Electrochemical phosphates removal using iron and aluminium electrodes. Chem. Eng. J., 172, 137-143.
  • 22. Oleszkiewicz J. 1998. Sewage sludge management. Decider’s guide. Kraków.
  • 23. Piotrowska-Cyplik A., Czarnecki Z. 2005. Determination of the capillary suction time (CST) as a method for estimation of optimal dose of flocculants dewatering of municipal sewage sludge. J. Res. Appl. Agr. Eng., 50(1), 21-23.
  • 24. Rodziewicz J., Krzemieniewski M. 2015. Patent application P.411116 – Sequential batch reactor with rotating biological contactor for wastewater treatment.
  • 25. Rodziewicz J. 2017. Removal of nitrogen and phosphorus compounds from wastewater originating from soilless cultivation of plants in a rotating electrobiological contactor (in Polish). Rozprawy i monografie. 202. Wydawnictwo Uniwersytetu Warmińsko-Mazurskiego w Olsztynie.
  • 26. Regulations of the Minister of Environment from 18th of November 2014 on conditions to be met for disposal of treated sewage into water and soil and concerning substances harmful to the environment (Dz.U. 2014. no. 1800), (in Polish).
  • 27. Shalaby A., Nassef E., Mubark A., Hussein M. 2014. Phosphate removal from wastewater by electrocoagulation using aluminium electrodes. Am. J. Environ. Eng. Sci., 1(5), 90-98.
  • 28. Sikora J. 2008. Analysis of the efficiency of conditioning and stabilization of sludge generated in fish farming under the influence of ultrasonic waves and Fenton reactions, Praca doktorska, UWM Olsztyn.
  • 29. Tchamango S., Nanseu-Njiki C.P., Ngameni E., Hadjiev D., Darchen A. 2010. Treatment of dairy effluents by electrocoagulation using aluminium electrodes. Sci. Total Environ., 408(4), 947-952.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-47be09e9-875b-44c3-87f1-5f083e117ba3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.