PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Selected aspects of production and characterization of layered biopolymer composite bonded with a cellulose-based binder

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Selected aspects of production and characterization of layered biopolymer composite bonded with a cellulose-based binder. This project aimed to study the possibility of using regenerated cellulose for gluing a layered composite. In the scope of research have been produced different variants of layered composite differ in wood species and pressing time. The produced composite has been characterized according to selected mechanical and physical properties. The prepared samples have been referred to as those bonded with industrial MUF resin. Obtained results proved that regenerated cellulose can be used as a bonding agent. Furthermore, the tests confirmed an improvement in mechanical and physical properties after the bonding of the regenerated cellulose.
PL
Wybrane aspekty wytwarzania i charakterystyka warstwowego kompozytu biopolimerowego wiązanego spoiwem na bazie celulozy. Celem badań było określenie możliwości wykorzystania regenerowanej celulozy do klejenia kompozytu warstwowego. W ramach badań wykonano różne warianty kompozytu warstwowego różniące się gatunkiem drewna i czasem prasowania. Wytworzony kompozyt scharakteryzowano zgodnie z wybranymi właściwościami mechanicznymi i fizycznymi. Uzyskane wyniki dowiodły, że regenerowana celuloza może być stosowana jako spoiwo. Ponadto badania potwierdziły poprawę właściwości mechanicznych i fizycznych po użyciu regenerowanej celulozy w kompozytach warstwowych.
Twórcy
  • Faculty of Wood Technology, Warsaw University of Life Sciences-SGGW, Warsaw, Poland
  • Department of Technology and Entrepreneurship in Wood Industry, Institute of Wood Sciences and Furniture, Warsaw University of Life Sciences – SGGW
Bibliografia
  • 1. Böhm, M., Salem, M. Z. M., and Srba, J. (2012). “Formaldehyde emission monitoring from a variety of solid wood, plywood, blockboard and flooring products manufactured for building and furnishing materials,” Journal of Hazardous Materials, Elsevier B.V., 221–222, 68–79. DOI: 10.1016/j.jhazmat.2012.04.013.
  • 2. Chang, L., Guo, W., and Tang, Q. (2016). “Assessing the Tensile Shear Strength and Interfacial Bonding Mechanism of Poplar Plywood with High-density Polyethylene Films as Adhesive,” BioResources, 12(1), 571–585. DOI: 10.15376/biores.12.1.
  • 3. Durmaz, E., Ucuncu, T., Karamanoglu, M., and Kaymakci, A. (2019). “Effects of heat treatment on some characteristics of Scots pine (Pinus sylvestris L.) wood,” BioResources, 14(4), 9531–9543. DOI: 10.15376/biores.14.4.9531-9543.
  • 4. EN 310. (1993). “Wood-based panels. Determination of modulus of elasticity in bending and of bending strength,” CEN, European Committee for Standardization, Brussels, Belgium.
  • 5. EN 717-1. (2004). “Wood-based panels - Determination of formaldehyde release - Part 1: Formaldehyde emission by the chamber method,” Brussels, Belgium.
  • 6. GB/T 9846.3. (2004). “Plywood-Part 3: General specification for plywood for general use,” Standardization Administration of China, Beijing, China.
  • 7. Gumowska, A., and Kowaluk, G. (2021). “The quality of the wood bonding depending on the method of applying the selected thermoplastic biopolymers,” Annals of WULS, Forestry and Wood Technology, 116, 78–85. DOI: 10.5604/01.3001.0015.6649.
  • 8. Hyttinen, M., Masalin-Weijo, M., Kalliokoski, P., and Pasanen, P. (2010). “Comparison of VOC emissions between air-dried and heat-treated Norway spruce (Picea abies), Scots pine (Pinus sylvesteris) and European aspen (Populus tremula) wood,” Atmospheric Environment, Elsevier Ltd, 44(38), 5028–5033. DOI: 10.1016/j.atmosenv.2010.07.018.
  • 9. Kawalerczyk, J., Dziurka, D., Mirski, R., and Trociński, A. (2019). “Flour fillers with urea-formaldehyde resin in plywood,” BioResources, 14(3), 6727–6735. DOI: 10.15376/biores.14.3.6727-6735.
  • 10. Korkut, D. S., Korkut, S., Bekar, I., Budakçi, M., Dilik, T., and Çakliclier, N. (2008). “The effects of heat treatment on the physical properties and surface roughness of turkish hazel (Corylus colurna l.) wood,” International Journal of Molecular Sciences, 9(9), 1772–1783. DOI: 10.3390/ijms9091772.
  • 11. Kowaluk, G. (2014). “Properties of Lignocellulosic Composites Containing Regenerated Cellulose Fibers,” BioResources, 9(3), 5339–5348. DOI: 10.15376/biores.9.3.5339-5348.
  • 12. Örs, Y., Atar, M., and Özçifçi, A. (2000). “Bonding strength of poly(vinyl acetate)-based adhesives in some wood materials treated with impregnation,” Journal of Applied Polymer Science, 76(9), 1472–1479. DOI: 10.1002/(SICI)1097-4628(20000531)76:9<1472::AID-APP11>3.0.CO;2-O.
  • 13. Sivrikaya, H., Tesařová, D., Jeřábková, E., and Can, A. (2019). “Color change and emission of volatile organic compounds from Scots pine exposed to heat and vacuum-heat treatment,” Journal of Building Engineering, 26(April). DOI: 10.1016/j.jobe.2019.100918.
  • 14. Song, W., Wei, W., Li, X., and Zhang, S. (2017). “Utilization of Polypropylene Film as an Adhesive to Prepare Formaldehyde-free, Weather-resistant Plywood-like Composites: Process Optimization, Performance Evaluation, and Interface Modification,” BioResources, 12(1), 228–254.
  • 15. Song, W., Wei, W., Ren, C., and Zhang, S. (2016). “Developing and evaluating composites based on plantation eucalyptus Rotary-Cut veneer and High-Density polyethylene film as novel building materials,” BioResources, 11(2), 3318–3331. DOI: 10.15376/biores.11.2.3318-3331.
  • 16. Sultan, M. T., Hong, H., Lee, O. J., Ajiteru, O., Lee, Y. J., Lee, J. S., Lee, H., Kim, S. H., and Park, C. H. (2022). “Silk Fibroin-Based Biomaterials for Hemostatic Applications,” Biomolecules, 12(5). DOI: 10.3390/biom12050660.
  • 17. Tuncer, F. D., and Doğu, A. D. (2018). “Effects of heat treatment on some macroscopic and physical properties of Scots pine sapwood and heartwood,” Forestist, 68(2), 93–100. DOI: 10.26650/forestist.2018.343295.
  • 18. Yamamoto, A., Rohumaa, A., Kontturi, E., Hughes, M., and Vuorinen, T. (2015). “The Effect of Hydrothermal Treatment on the Color Stability and Chemical Properties of Birch Veneer Surfaces,” BioResources, 10(4), 6610–6623. DOI: 10.15376/biores.10.4.6610-6623.
  • 19. Zeng, X., Luo, J., Hu, J., Li, J., Gao, Q., and Li, L. (2016). “Aging resistance properties of poplar plywood bonded by soy protein-based adhesive,” BioResources, 11(2), 4332–4341. DOI: 10.15376/biores.11.2.4332-4341.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-47bcdda3-19cc-47de-beab-437a3441a674
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.