PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Physical foundations determining spectral characteristics measured in Bragg gratings subjected to bending

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The article presents an analysis of the impact of bending optical fibers with tilted Bragg gratings on their spectral parameters. This article proves that it is possible to a choose TFBG cladding mode and the optical spectrum range related to it that allows the best metrological properties to be obtained when measuring bend. The results contained in the paper explain why the minima in the spectral characteristics, corresponding only to some cladding modes, change their shape during TFBG bending, which is important for application of Bragg gratings as bending sensors. It has been presented that in the case of TFBG we are able to aggregate the knowledge obtained during experiment to the form of a physical model of the fiber bending sensor.
Rocznik
Strony
573--584
Opis fizyczny
Bibliogr. 23 poz., rys., wykr.
Twórcy
  • Lublin University of Technology, Nadbystrzycka 38A, 20-618 Lublin, Poland
Bibliografia
  • [1] Świrniak, G., & Mroczka, J. (2016). Approximate solution for optical measurement of the diameter and refractive index of a small and transparent fiber. Journal of the Optical Society of America A, Optics, Image Science, and Vision, 33(4), 667-676. https://doi.org/10.1364/JOSAA.33.000667
  • [2] Onofri, F. R. A., Krzysiek, M. A., Barbosa, S., Messager, V., Ren, K.-F., & Mroczka, J. (2011). Near-critical-angle scattering for the characterization of clouds of bubbles: Particular effect. Applied Optics, 50(30), 5759-5769. https://doi.org/10.1364/AO.50.005759 https://doi.org/10.1364/AO.50.005759
  • [3] Onofri, F., Krzysiek, M., & Mroczka, J. (2007). Critical angle refractometry and sizing of bubble clouds. Optics Letters, 32(14), 2070-2072. https://doi.org/10.1364/OL.32.002070
  • [4] Tolegenova, A., Kisała, P., Zhetpisbayeva, A., Mamyrbayev, O., & Medetov, B. (2019). Experimental determination of the characteristics of a transmission spectrum of tilted fiber Bragg gratings. Metrology and Measurement Systems, 26(3), 581-589. https://doi.org/10.24425/mms.2019.129585
  • [5] Cięszczyk, S., Kisała, P., Skorupski, K., Panas, P., & Klimek, J. (2018). Rotation and twist measurement using tilted fibre Bragg gratings. Metrology and Measurement Systems, 25(3), 429-440. https://doi.org/10.24425/123893
  • [6] Harasim, D., Kisała, P., Yeraliyeva, B., & Mroczka, J. (2021). Design and Manufacturing Optoelectronic Sensors for the Measurement of Refractive Index Changes under Unknown Polarization State. Sensors, 21(21), 1-29. https://doi.org/10.3390/s21217318
  • [7] Jin, L., Wang, Z., Fang, Q., Liu, Y., Liu, B., Kai, G., & Dong X. (2007). Spectral characteristics and bend response of Bragg gratings inscribed in all-solid bandgap fibers. Optics Express, 15(23), 15555-15565. https://doi.org/10.1364/OE.15.015555
  • [8] Swanson, A. J., Raymond, S. G., Janssens, S., Breukers, R. D., Bhuiyan, M. D. H., Lovell-Smith, J. W., & Waterland, M. R. (2016). Development of novel polymer coating for FBG based relative humidity sensing. Sensors and Actuators A, 249, 217-224. https://doi.org/10.1016/j.sna.2016.08.034
  • [9] Kisała, P., Harasim, D., & Mroczka J. (2016). Temperature-insensitive simultaneous rotation and displacement (bending) sensor based on tilted fiber Bragg grating. Optics Express, 24(26), 29922-29929. https://doi.org/10.1364/OE.24.029922
  • [10] Kisała, P., Mroczka, J., Cięszczyk, S., Skorupski, K., & Panas, P. (2018). Twisted tilted fiber Bragg gratings: new structures and polarization properties. Optics Letters, 43(18), 4445-4448. https://doi.org/10.1364/OL.43.004445
  • [11] Shao, L. Y., & Albert, J. (2010). Compact fiber-optic vector inclinometer. Optics Letters, 35(7), 1034-1036. https://doi.org/10.1364/OL.35.001034
  • [12] Jin, Y. X., Chan, C. C., Dong, X. Y., & Zhang, Y. F. (2009). Temperature-independent bending sensor with tilted fiber Bragg grating interacting with multimode fiber. Optics Communications, 282(19), 3905-3907. https://doi.org/10.1016/j.optcom.2009.06.058
  • [13] Dong, X., Liu, Y., Shao, L. Y., Kang, J., & Zhao, Ch. L. (2011). Temperature-Independent Fiber Bending Sensor Based on a Superimposed Grating. IEEE Sensors Journal, 11(11), 3019-3022. https://doi.org/10.1109/JSEN.2011.2157124
  • [14] Amanzadeh, M., Aminossadati, S. M., Kizil, M. S., & Rakić, A. D. (2018). Measurement, 128, 119-137. https://doi.org/10.1016/j.measurement.2018.06.034
  • [15] Baek, S., Jeong, Y., & Lee B. (2002). Characteristics of short-period blazed fiber Bragg gratings for use as macrobending sensors. Applied Optics, 41(4), 631-636. https://doi.org/10.1364/AO.41.000631
  • [16] Liu, B., Miao, Y., Zhou, H., & Zhao Q. (2008). Research on Pure Bending characteristic of tilted fiber Bragg grating. IEEE Optical Fiber Sensors Conference, 1-4. https://doi.org/10.1109/APOS.2008.5226323
  • [17] Guo, T., Chen, Ch., Laronche, A., & Albert, J. (2008). Power-Referenced and Temperature-Calibrated Optical Fiber Refractometer. IEEE Photonics Technology Letters, 20(8), 635-637. https://doi.org/10.1109/LPT.2008.919457
  • [18] Erps, J. V., Debaes, C., Nasilowski, T., Mergo, P., Wojcik, J., Aerts, T., Terryn, H., Watté, J., & Thienpont, H. (2008). A low loss 180 degrees coupling fiber socket making use of low bending loss hole-assisted fiber. Proc. SPIE 6992, 1-8. https://doi.org/10.1117/12.778649
  • [19] Marcuse, D., (1973). Coupled mode theory of round optical fibers. The Bell System Technical Journal, 52(6), 817-842. https://doi.org/10.1002/j.1538-7305.1973.tb01992.x
  • [20] Block, U. L., Digonnet, M. J. F., Fejer, M. M., & Dangui, V. (2006). Bending-induced birefringence of optical fiber cladding modes. Journal of Lightwave Technology, 24(6), 2336-2339. https://doi.org/10.1109/JLT.2006.874566
  • [21] Marcuse, D. (1976). Field deformation and loss caused by curvature of optical fibers. Journal of the Optical Society of America, 66(4), 311-320. https://doi.org/10.1364/JOSA.66.000311
  • [22] Silva, R. M., Ferreira, M. S., & Frazão, O. (2012). Temperature independent torsion sensor using a high-birefringent Sagnac loop interferometer. Optics Communications, 285, 1167-1170. https://doi.org/10.1016/j.optcom.2011.11.119
  • [23] Erdogan, T., & Sipe J. (1996). Tilted fiber phase gratings. Journal of the Optical Society of America A, 13(2), 296-313. https://doi.org/10.1364/JOSAA.13.00029
Uwagi
1. This work was supported by the Science Discipline Fund of Lublin University of Technology (grant # FD-EE-309).
2. Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-47ba9ad0-47ce-40a6-9f02-3fbb58bca200
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.