PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Clarification of Pharmaceutical Wastewater with Moringa Oleifera: Optimization Through Response Surface Methodology

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Herbal pharmaceutical industrial wastewater contains a high amount of suspended solids and alkaline (pH > 8); therefore it requires approprite coagulant and flocculant compounds for its wastewater treatment. The most widely used flocculant is a synthetic that has certain problems such as non-biodegradability and releases of toxic residual monomers. The use of eco-friendly flocculants as alternative materials for conventional flocculant in water and wastewater treatments is increasing. Numerous factors influence the performance of coagulation-flocculation process, such as coagulant dosage, flocculant dosage, initial potential of hydrogen (pH) and velocity gradient of coagulation-flocculation. The main aim of this research is to evaluate the capability and effectiveness of Moringa oleifera extract for removal of suspended solid in herbal pharmaceutical industry. A coagulation-flocculation test was done by performing jar test at various speeds, according to the variation of the conducted treatment research. In this study, response surface methodology (RSM) approach was used to optimize the concentration of coagulant dosage, flocculant dosage and flocculation velocity gradient (G), and the results were measured as maximum percentage of suspended solid removal. The wastewater used in this research originally came from the inlet of herbal pharmaceutical industry wastewater treatment plant, which was collected over 3 days. The wastewater has a total suspended solids of more than 1250 mg/L, and was alkaline (pH 9–10). The moringa extract was made from the extraction of a fat free moringa powder with a salt solution in a certain ratio. The percentage removal of suspended solid was 93.42–99.54%. The final results of the analysis of response surface showed that the variables of flocculant dosage and the flocculation velocity gradient (G) have a huge impact on the amount of suspended solid removal, compared with the coagulant dosage. The model generated from the response analysis is a quadratic model. The optimum point of the removal suspended solid quadratic model is at 10.6566 mg/L alum dosage, 13.8185 ml/L Moringa oleifera extract dosage, and G velocity of flocculation 84.845 sec-1.
Rocznik
Strony
126--134
Opis fizyczny
Bibliogr. 35 poz., tab., rys.
Twórcy
autor
  • Department of Environmental Health, Politeknik Kesehatan Kementerian Kesehatan, Surabaya 60282, Indonesia
autor
  • Department of Environmental Health, Politeknik Kesehatan Kementerian Kesehatan, Surabaya 60282, Indonesia
autor
  • Department of Environmental Engineering, Institut Teknologi Sepuluh Nopember, Surabaya 60111, Indonesia
Bibliografia
  • 1. Al-Anizi, A.A., Hellyer, M.T., & Zhang, D., 2014. Toxicity assessment and modelling of Moringa oleifera seeds in water purification by whole cell bioreporter. Water Research, 56.
  • 2. Amante, B., López-Grimau, V., & Smith, T., 2016. Valuation of oil extraction residue from Moringa oleifera seeds for water purification in Burkina Faso. Desalination and Water Treatment, 57(6).
  • 3. Aslamiah, S.S., Yulianti, E., & Jannah, A., 2013. Coagulation Activity of Kelor Seed Extract (Moringa oleifera L.) in NaCl Solution to Liquid Waste PT. SIER PIER Pasuruan. Alchemy, 2(3), 178–183. http://ejournal.uin-malang.ac.id/index.php/Kimia/ article/view/2891.
  • 4. Baptista, A.T.A., Coldebella, P.F., Cardines, P.H.F., Gomes, R.G., Vieira, M.F., Bergamasco, R., & Vieira, A.M.S., 2015. Coagulation-flocculation process with ultrafiltered saline extract of moringa oleifera for the treatment of surface water. Chemical Engineering Journal, 276.
  • 5. Baptista, A.T.A., Silva, M.O., Gomes, R.G., Bergamasco, R., Vieira, M.F., & Vieira, A.M.S., 2017. Protein fractionation of seeds of Moringa oleifera lam and its application in superficial water treatment. Separation and Purification Technology, 180.
  • 6. Barrado-Moreno, M.M., Beltran-Heredia, J., & Martín-Gallardo, J., 2016. Microalgae removal with Moringa oleifera. Toxicon, 110.
  • 7. Bhuptawat, H., Folkard, G.K., & Chaudhari, S., 2007. Innovative physico-chemical treatment of wastewater incorporating Moringa oleifera seed coagulant. Journal of Hazardous Materials, 142(1–2), 477–482.
  • 8. Bratby, J., 2016. Coagulation and flocculation in water and wastewater treatment. Third Edition, IWA Publishing, London.
  • 9. Dassanayake, K.B., Jayasinghe, G.Y., Surapaneni, A., & Hetherington, C., 2015. A review on alum sludge reuse with special reference to agricultural applications and future challenges. Waste Management, 38.
  • 10. De Paula, H.M., De Oliveira Ilha, M.S., & Andrade, L.S., 2014. Concrete plant wastewater treatment process by coagulation combining aluminum sulfate and Moringa oleifera powder. Journal of Cleaner Production, 76.
  • 11. Fahey, J., 2005. Moringa oleifera: A Review of the Medical Evidence for Its Nutritional, Therapeutic, and Prophylactic Properties. Part 1. Trees for Life Journal, 1–15.
  • 12. Fatehah, M.O., Hossain, S., & Teng, T.T., 2013. Semiconductor Wastewater Treatment Using Tapioca Starch as a Natural Coagulant. Journal of Water Resource and Protection, 5(11), 1018–1026. http://www.scirp.org/journal/PaperInformation. aspx?PaperID=40064&#abstract.
  • 13. Garde, W.K., Buchberger, S.G., Wendell, D., & Kupferle, M.J., 2017. Application of Moringa Oleifera seed extract to treat coffee fermentation wastewater. Journal of Hazardous Materials, 329.
  • 14. Ghebremichael, K.A., Gunaratna, K.R., Henriksson, H., Brumer, H., & Dalhammar, G., 2005. A simple purification and activity assay of the coagulant protein from Moringa oleifera seed. Water Research, 39(11), 2338–2344.
  • 15. Harfouchi, H., Hank, D., & Hellal, A., 2016. Response surface methodology for the elimination of humic substances from water by coagulation using powdered Saddled sea bream scale as coagulant-aid. Process Safety and Environmental Protection, 99, 216–226. http://dx.doi.org/10.1016/j. psep.2015.10.019.
  • 16. Hendrawati, Yuliastri, I.R., Nurhasni, Rohaeti, E., Effendi, H., & Darusman, L.K., 2016. The use of Moringa Oleifera Seed Powder as Coagulant to Improve the Quality of Wastewater and Ground Water. IOP Conference Series: Earth and Environmental Science, 31.
  • 17. Hidayat, S., 2009. Protein Biji Kelor Sebagai Bahan Aktif Penjernihan Air (Kelor Seeds Proteins As Water Purification Agent). Protein Biji Kelor Sebagai Bahan Aktiv Penjernihan Air (Kelor Seeds roteins as Water Purification Agent), 2, 1–69.
  • 18. Irfan, M., Butt, T., Imtiaz, N., Abbas, N., Khan, R.A., & Shafique, A., 2017. The removal of COD, TSS and colour of black liquor by coagulation– flocculation process at optimized pH, settling and dosing rate. Arabian Journal of Chemistry, 10.
  • 19. Jiang, J.Q., 2015. The role of coagulation in water treatment. Current Opinion in Chemical Engineering, 8, 36–44.
  • 20. Krzemińska, D., Neczaj, E., & Borowski, G., 2015. Advanced oxidation processes for food industrial wastewater decontamination. Journal of Ecological Engineering, 16(2), 61–71.
  • 21. Lee, C.S., Robinson, J., & Chong, M.F., 2014. A review on application of flocculants in wastewater treatment. Process Safety and Environmental Protection, 92, 489–508.
  • 22. Nordmark, B.A., Przybycien, T.M., & Tilton, R.D., 2016. Comparative coagulation performance study of Moringa oleifera cationic protein fractions with varying water hardness. Journal of Environmental Chemical Engineering, 4(4).
  • 23. Nourani, M., Baghdadi, M., Javan, M., & Bidhendi, G.N., 2016. Production of a biodegradable flocculant from cotton and evaluation of its performance in coagulation-flocculation of kaolin clay suspension: Optimization through response surface methodology (RSM). Journal of Environmental Chemical Engineering, 4(2), hal.1996–2003. http://dx.doi.org/10.1016/j.jece.2016.03.028.
  • 24. Okuda, T., Baes, A.U., Nishijima, W., & Okada, M., 2001. Coagulation Mechanism of Salt Solution-Extracted Active Component in Moringa oleifera Seeds. Water Research, 35(3), 830–834.
  • 25. Pavankumar, A.R., Norén, J., Singh, L., & Chandappa Gowda, N.K., 2014. Scaling-up the production of recombinant Moringa oleifera coagulant protein for large-scale water treatment applications. RSC Advances, 4(14).
  • 26. Prihatinningtyas, 2013. Natural Coagulant Application from Corn Flour In Clean Water Treatment. Jurnal Teknosains, 2(2), 1–26.
  • 27. Sánchez-Martín, J., Beltrán-Heredia, J., & Peres, J.A., 2012. Improvement of the flocculation process in water treatment by using Moringa oleifera seeds extract. Brazilian Journal of Chemical Engineering, 29(3), 495–501. http://www.scielo.br/ scielo.php?script=sci_arttext&pid=S0104–66322 012000300006&lng=en&nrm=iso&tlng=en [Accessed 24 Agustus 2016].
  • 28. Santos, A.F.S., Matos, M., Sousa, Â., Costa, C., Nogueira, R., Teixeira, J.A., Paiva, P.M.G., Parpot, P., Coelho, L.C.B.B., & Brito, A.G., 2016. Removal of tetracycline from contaminated water by Moringa oleifera seed preparations. Environmental Technology (United Kingdom), 37(6).
  • 29. Shak, K.P.Y., & Wu, T.Y., 2014. Coagulation-flocculation treatment of high-strength agro-industrial wastewater using natural Cassia obtusifolia seed gum: Treatment efficiencies and flocs characterization. Chemical Engineering Journal, 256, 293–305. http://dx.doi.org/10.1016/j.cej.2014.06.093.
  • 30. Subramonian, W., Wu, T.Y., & Chai, S.P., 2014. A comprehensive study on coagulant performance and floc characterization of natural Cassia obtusifolia seed gum in treatment of raw pulp and paper mill effluent. Industrial Crops and Products, 61.
  • 31. Suopajärvi, T., Liimatainen, H., Hormi, O., & Niinimäki, J., 2013. Coagulation-flocculation treatment of municipal wastewater based on anionized nanocelluloses. Chemical Engineering Journal, 231.
  • 32. Susanti, E., Ciptati, Ratnawati, R., Aulanni’am, & Rudijanto, A., 2015. Qualitative analysis of catechins from green tea GMB-4 clone using HPLC and LC-MS/MS. Asian Pacific Journal of Tropical Biomedicine, 5(12), 1046–1050. http://dx.doi. org/10.1016/j.apjtb.2015.09.013.
  • 33. Teh, C.Y., Wu, T.Y., & Juan, J.C., 2014. Optimization of agro-industrial wastewater treatment using unmodified rice starch as a natural coagulant. Industrial Crops and Products, 56.
  • 34. Turányi, T., & Tomlin, A.S., 2015. Analysis of Kinetic Reaction Mechanisms. Tersedia dihttps://books. google.com/books?id=11sEBgAAQBAJ&pgis=1.
  • 35. Wang, F.-H., Hao, H.-T., Sun, R., Li, S., Han, R., Papelis, C., & Zhang, Y., 2014. Bench-scale and pilot-scale evaluation of coagulation pre-treatment for wastewater reused by reverse osmosis in a petrochemical circulating cooling water system. Desalination, 335(1), 64–69. Tersedia dihttp://www.sciencedirect.com/science/article/pii/ S0011916413005900.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-47b9a7b8-6c43-48e3-8857-256564501fcd
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.