PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Improving separation efficiency of galena flotation using the Aerated Jet Flotation Cell

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The low separation efficiency of traditional mechanical flotation cells for galena flotation primarily was caused by the low collision probability between bubbles and fine particles and high detachment probability of coarse particles. A flotation device named Aerated Jet Flotation Cell (AJFC) was adopted to improve the separation efficiency of galena flotation. Reducing bubble size and optimizing turbulence distribution were respectively confirmed as effective ways to improve fine galena-bubble collision efficiency and decrease detachment probability of coarse galena. In AJFC, micro-bubbles in diameter of 0.1-0.3 mm were generated by forcing compressed air to pass through porous high-density polyethylene tube, and high shear rate and appropriate turbulence were provided by installing a sparger with holes at the end of downcomer. The key parameters, including sparger hole number, turbulent kinetic energy (TKE), air-slurry ratio and superficial gas velocity (Jg) were optimized to achieve a desired separation performance of galena flotation. Separation efficiency of 62.54 % at a residence time of 2.25 min was achieved by AJFC, while separation efficiency of 59.12 % at a residence time of 7.5 min was achieved by mechanical flotation cell. Besides, AJFC had less loss of Pb in tailings than mechanical flotation cell in the whole particle size range, especially for fine (-25 µm) and coarse (+74 µm) size fractions.
Rocznik
Strony
513--527
Opis fizyczny
Bibliogr. 36 poz., rys., tab., wykr., wz.
Twórcy
autor
  • School of Minerals Processing & Bioengineering, Central South University, Changsha, No. 932 Lushan south Road, Hunan 410083, China
autor
  • School of Minerals Processing & Bioengineering, Central South University, Changsha, No. 932 Lushan south Road, Hunan 410083, China
autor
  • School of Minerals Processing & Bioengineering, Central South University, Changsha, No. 932 Lushan south Road, Hunan 410083, China
autor
  • School of Minerals Processing & Bioengineering, Central South University, Changsha, No. 932 Lushan south Road, Hunan 410083, China
autor
  • School of Minerals Processing & Bioengineering, Central South University, Changsha, No. 932 Lushan south Road, Hunan 410083, China
Bibliografia
  • AHMAD, H., BEHZAD, V.H., SABRI, K., ZUZANA, B., MEHMET, S.C., 2016. Effect of bubble size and velocity on collision efficiency in chalcopyrite flotation. Colloids and Surfaces A: Physicochemical and Engineering Aspects 498, 258-267.
  • CLAYTON, R., JAMESON, G.J., MANLAPIG, E.V., 1991. The development and application of the Jameson cell. Minerals Engineering, 4, 925-933.
  • COWBURN, J., HARBORT, G., MANLAPIG, E., POKRAJCIC, Z., 2006. Improving the recovery of coarse coal particles in a Jameson cell. Minerals Engineering ,19, 609-618.
  • DEGLON, D.A., EGYA-MENSAH, D., FRANZIDIS, J.P., 2000. Review of hydrodynamics and gas dispersion in flotation cells on South African platinum concentrators. Minerals Engineering, 13, 235-244.
  • GORAIN, B., FRANZIDIS, J.P., MANLAPIG, E., 1995. Studies on impeller type impeller speed and air flow rate in an industrial scale flotation cell — Part 1: Effect on bubble size distribution. Minerals Engineering, 8, 615-635.
  • GEORGE, P., NGUYEN, A.V., JAMESON, G.J., 2004. Assessment of true flotation and entrainment in the flotation of submicron particles by fine bubbles. Minerals Engineering 17,847-853.
  • GURSOY, Y.H., OTEYAKA, B., 2015. Effects of air-to-pulp ratio and bias factor on flotation of complex Cu-Zn sulphide ore in the Jameson cell. Physicochemical Problems of Mineral Processing, 51, 511-519.
  • HARBORT, G., DEBONO, S., CARR, D., LAWSON, V., 2003. Jameson cell fundamentals — A revised perspective. Minerals Engineering, 16, 1091-1101.
  • JAMESON, G.J., 2010. New directions in flotation machine design. Minerals Engineering, 23, 835-841.
  • JAMESON, G.J., EMER, C., 2019. Coarse chalcopyrite recovery in a universal froth flotation machine. Minerals Engineering, 134, 118-133.
  • KOWALCZUK, P.B., SAHBAZ, O., DRZYMALA, J., 2011. Maximum size of floating particles in different flotation cells. Minerals Engineering, 24, 766-771.
  • KOWALCZUK, P.B., DRZYMALA, J., 2016. Physical meaning of the Sauter mean diameter of spherical particulate matter. Particulate Science and Technology, 34, 645-647.
  • LI, G., CAO, Y., LIU, J., WANG, D., 2012. Cyclonic flotation column of siliceous phosphate ore, International Journal of Mineral Processing, 110-111, 6-11.
  • LI, S, LU, D.F., ZHENG, X.Y., CHEN, X.H., ZHENG, X.Y, LI, X.D, CHU, H.R, WANG, Y.H., 2017. Industrial application of a modified pilot-scale Jameson cell for the flotation of spodumene ore in high altitude area. Powder Technology, 320, 358-361
  • LI, Y., LI, J., CHEN, P., CHEN, J., SHEN, L., ZHU, X., CHENG, G., 2019. The effect of ultra-fine coal on the flotation behavior of silica in subbituminous coal reverse flotation. Powder Technology, 342, 457-463.
  • MIETTINEN, T., RALSTON, J., FORNASIERO, D., 2010. The limits of fine particle flotation. Minerals Engineering, 23, 420-437.
  • MATIS, K.A., Flotation Science and Engineering. 1995.1st Edition., Marcel Dekker, New York.
  • PRAKASH, R., MAJUMDER, S.K., SINGH, A., 2018. Flotation technique: Its mechanisms and design parameters. Chemical Engineering and Processing - Process Intensification, 127, 249-270.
  • RUBIO, J., SOUZA, M., SMITH, R., 2002. Overview of flotation as a wastewater treatment technique. Minerals Engineering, 15, 139-155.
  • SAHBAZ, O., OTEYAKA, B., KELEBEK, S., UCAR, A., DEMIR, U., 2008. Separation of unburned carbonaceous matter in bottom ash using Jameson cell. Separation and Purification Technology, 62, 103-109.
  • SAHBAZ, O., ERCETIN, U., OTEYAKA, B., 2012. Determination of turbulence and upper size limit in jameson flotation cell by the use of computational fluid dynamic modelling. Physicochemical Problems of Mineral Processing, 48, 533- 544.
  • SAHBAZ, O., UCAR, A., OTEYAKA, B., 2013. Velocity gradient and maximum floatable particle size in the jameson cell. Minerals Engineering, 41, 79-85.
  • SAHBAZ, O., UCAR, A., OTEYAKA, B., 2019. Downcomer modification in the Jameson cell and its effects on coarse particle flotation. Particulate Science and Technology, 37, 510-515.
  • SARHAN A.R., NASER, J., BROOKS, G., 2017. CFD analysis of solid particles properties effect in three-phase flotation column. Separation and Purification Technology, 185, 1-9.
  • SOBHY, A., TAO, D., 2013. Nanobubble column flotation of fine coal particles and associated fundamentals. International Journal of Mineral Processing, 124, 109-116.
  • TABOSA, E., RUNGE, K., HOLTHAM, P., 2016. The effect of cell hydrodynamics on flotation performance. International Journal of Mineral Processing, 156, 99-107.
  • TASDEMIR, A., TASDEMIR, T., OTEYAKA, B., 2007. The effect of particle size and some operating parameters in the separation tank and the downcomer on the Jameson cell recovery. Minerals Engineering, 20, 1331-1336.
  • TRAHAR, W.J., WARREN, L.J., 1976. The flotability of very fine particles—A review. International Journal of Mineral Processing, 3, 103-131.
  • UCURUM, M., 2009. Influences of Jameson flotation operation variables on the kinetics and recovery of unburned carbon. Powder Technology, 191, 240-246.
  • VERA, M.A., FRANZIDIS, J.P., MANLAPIG, E.V., 1999. JKMRC high bubble surface area flux flotation cell. Minerals Engineering, 12, 477-484.
  • WANG, L., PENG, Y., RUNGE, K., BRADSHAW, D., 2015. A review of entrainment: Mechanisms, contributing factors and modelling in flotation. Minerals Engineering, 70, 77-91
  • WANG, G., NGUYEN, A.V., MITRA, S., JOSHI, J.B., JAMESON G.J., EVANS, G.M., 2016. A review of the mechanisms and models of bubble-particle detachment in froth flotation. Separation and Purification Technology, 170, 155-172.
  • WANG, Y.H., XUE Z.X., ZHENG X.Y., LU D.F., SUN Z.X., 2020. Matching relation between matrix aspect ratio and applied magnetic induction for maximum particle capture in transversal high gradient magnetic separation. Minerals Engineering, 151, 106316.
  • XUE, Z.X., WANG Y.H., ZHENG X.Y., LU D.F., LI X.D., 2019. Particle capture of special cross-section matrices in axial high gradient magnetic separation: A 3D simulation. Separation and Purification Technology, 237, 116375.
  • YAN Y.D., JAMESON G.J., 2004. Application of the Jameson Cell technology for algae and phosphorus removal from maturation ponds. International Journal of Mineral Processing, 73, 23-28.
  • ZHENG, X.Y., SUN, Z.X., WANG, Y.H., LU, D.F., XUE, Z.X.Y., 2020. Matching relation between matrix aspect ratio and applied induction for maximum particle capture in longitudinal high gradient magnetic separation. Separation and Purification Technology,241,116687.
Uwagi
This work is financed by the National Natural Science Foundation of China (Grant No. 51674290 and No. 51804341), and the Natural Science Foundation of Hunan Province (No. 2019JJ50833) and Key Laboratory of Hunan Province for Clean and Efficient Utilization of Strategic Calcium-containing Mineral Resources (No. 2018TP1002).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-47b3dec0-db0b-41e2-afc5-8480fd5fffbc
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.