PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Averaged model of a buck DC–DC converter for single-loop description of current-mode control

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
: Averaged models: an AC large signal, DC and AC small signals of a currentcontrolled buck converter are described. Only peak current mode control of a converter working in the continuous conduction mode (CCM) is considered. The model derivation differs from the typical approaches presented in the literature and doesn’t refer to the multiloop concept of a current controlled converter. The separation of the variables method is used in the model derivation. The resulting models are presented in the form of an equation set and equivalent circuits. The calculations based on the presented models are verified by measurements and full-wave PSpice simulations.
Rocznik
Strony
891--905
Opis fizyczny
Bibliogr. 30 poz., rys., wz.
Twórcy
  • Department of Electronics and Computer Science Koszalin University of Technology Śniadeckich Street 2, 75-453 Koszalin, Poland
  • Department of Electronics and Computer Science Koszalin University of Technology Śniadeckich Street 2, 75-453 Koszalin, Poland
  • Department of Electronics and Computer Science Koszalin University of Technology Śniadeckich Street 2, 75-453 Koszalin, Poland
Bibliografia
  • [1] Erickson R.W., Maksimovic D., Fundamentals of Power Electronics, 2-nd Edition, Kluwer (2002).
  • [2] Kazimierczuk M.K., Pulse-Width Modulated DC–DC Power Converters, J. Wiley (2008).
  • [3] Deisch C.W., Simple Switching Control Method Changes Power Converter into a Current Source, IEEE PESC, Record, pp. 300–306 (1978).
  • [4] Capel A., Ferrante G., O’Sullivan D., Weinberg A., Application of the Injected Current Model for the Dynamic Analysis of Switching Regulators with the New Concept of LC3 Modulator, IEEE PESC, Record, pp. 135–147 (1978).
  • [5] Hsu S.-P., Brown A., Rensink L., Middlebrook R.D., Modelling and Analysis of Switching Dc-to-Dc Converters in Constant-Frequency Current-Programmed Mode, IEEE PESC, pp. 284–301 (1979).
  • [6] Middlebrook, R.D., Topics in Multiple-Loop Regulators and Current Mode Programning, IEEE Transactions on Power Electronics, vol. PE-2, no. 2, pp. 109–124 (1987).
  • [7] Middlebrook R.D., Modeling Current-Programmed Buck and Boost Regulators, IEEE Transactions on Power Electronics, vol. 4, no. 1, pp. 36–52 (1989).
  • [8] Ridley R.B., Cho B.H., Lee F.C.Y., Analysis and Interpretation of Loop Gains of Multiloop-Controlled Switching Regulators, IEEE Transactions on Power Electronics, vol. 3, no. 4, pp. 489–498 (1988).
  • [9] Vorperian V., Simplified Analysis of PWM Converters using Model of PWM Switch, Part I: Continuous Conduction Mode, IEEE Transactions on Aerospace and Electronic Systems, vol. 26, no. 3, pp. 490–496 (1990).
  • [10] Vorperian V., Simplified analysis of PWM converters using the model of the PWM switch, Part II: Discontinuous Conduction Mode, IEEE Transactions on Aerospace and Electronic Systems, vol. 26, no. 3, pp. 497–505 (1990).
  • [11] Ben-Yaakov S., Average simulation of PWM converters by direct implementation of behavioural relationships, International Journal of Electronics, vol. 77, no. 5, pp. 731–746 (1994).
  • [12] Ridley R.B., A New, Continuous-Time Model For Current-Mode Control, IEEE Transactions on Power Electronics, vol. 6, no. 2, pp. 271–280 (1991).
  • [13] Ridley R.B., An Accurate and Practical Small-Signal Model for Current-Mode Control, Ridley Engineering, Inc., pp. 1–22 (1999).
  • [14] Li J., Lee F.C., New Modeling Approach and Equivalent Circuit Representation for Current-Mode Control, IEEE Transactions on Power Electronics, vol. 25, no. 5, pp. 1218–1230 (2010).
  • [15] Yu F., Lee F.C., Mattavelli P., A Small Signal Model for Average Current Mode Control Based On Describing Function Approach, IEEE Energy Conversion Congress and Exposition, pp. 405–412 (2011).
  • [16] Yan Y., Lee F.C., Mattavelli P., Unified Three-Terminal Switch Model for Current Mode Controls, IEEE Transactions on Power Electronics, vol. 27, no. 9, pp. 4060–4070 (2012).
  • [17] Yan Y., Lee F.C., Mattavelli P., Dynamic performance comparison of Current Mode Control Schemes for Point-of-Load Buck Converter Application, IEEE APEC, pp. 2484–2491 (2012).
  • [18] Yan Y., Lee F.C., Mattavelli P., I2 Average Current Mode Control for Switching Converters, IEEE Transactions on Power Electronics, vol. 29, no. 4, pp. 2027–2036 (2014).
  • [19] Saini D., Reatti A., Kazimierczuk M., Average current-mode control of buck dc-dc converter with reduced control voltage ripple, 42nd Annual Conference of the IEEE Industrial Electronics Society – IECON, pp. 3270–3275 (2016).
  • [20] Saini D., Kazimierczuk M., Audio-susceptibility of inner loop of true-average current-mode controlled buck dc-dc converter, IEEE 60th International Midwest Symposium on Circuits and Systems (MWSCAS), pp.460–463 (2017).
  • [21] Suntio T., On Dynamic Modeling of PCM-Controlled Converters – Buck Converter as an Example, IEEE Transactions on Power Electronics, vol. 33, iss. 6, pp. 5502–5518 (2018).
  • [22] Zhu D., Wang Y., Duan J., Wang R., Modeling and Bifurcation Analysis of Buck Converters Under Peak Current-Mode Control, Chinese Automation Congress (CAC), pp. 2563–2568 (2018).
  • [23] Chiu Y.T., Liu Y.H., Hung C.C., A high-performance current-mode DC-DC buck converter with adaptive clock control technique, 2018 International Symposium on VLSI Design, Automation and Test (VLSI-DAT) (2018), DOI: 10.1109/VLSI-DAT.2018.8373259.
  • [24] Chen J.J., Hwang Y.S., Hwang B.H., Jhang Y.C., Ku Y.T., A dual-mode fast-transient average-currentmode buck converter without slope-compensation, 7th International Symposium on Next Generation Electronics (ISNE) (2018), DOI: 10.1109/ISNE.2018.8394680.
  • [25] Kang J.G., Park J., Jeong M.G., Yoo C., A Time-Domain-Controlled Current-Mode Buck Converter With Wide Output Voltage Range, IEEE Journal of Solid-State Circuits, vol. 54, iss., (2019), DOI: 10.1109/JSSC.2018.2884912.
  • [26] Kajiwara K., Yamasaki K., Matsui N., Kurokawa F., Stability of Digital Hysteresis Current Mode Buck Converter for DC Distribution System, 7th International Conference on Renewable Energy Research and Applications (ICRERA 2018), pp. 1321–1324 (2018).
  • [27] Jeong M.G., Kang J.G., Park J., Yoo C., A Current-Mode Hysteretic Buck Converter with MultipleReset RC-Based Inductor Current Sensor, IEEE Transactions on Industrial Electronics (2019), DOI: 10.1109/TIE.2018.2889613.
  • [28] Janke W., Averaged models of pulse-modulated DC-DC power converters. Part I. Discussion of standard methods, Archives of Electrical Engineering, vol. 61, no. 4, pp. 609–631 (2012).
  • [29] Janke W., Averaged Models of Pulse-Modulated DC-DC Converters, Part II. Models Based on the Separation of Variables, Archives of Electrical Engineering, vol. 61, no. 4, pp. 633–654 (2012).
  • [30] Janke W., Kraśniewski J., Averaged model of pulse-type current-programmed Buck DC–DC converter, Electrical Review (in Polish), no. 8, pp. 120–123 (2017).
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-47b2dbd3-5265-403f-81ec-5dcf7aeedff0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.