PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Vascular stents - materials and manufacturing technologies

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The objective of this article is to present materials and technology for the manufacture of vascular stents with appropriate design requirements. The use of the right material is very important in implantology. A biomaterial introduced into the circulatory system must be biocompatible and hemocompatible. At the same time, it should not initiate toxic, mutagenic, or immunological reactions. Currently, 316L stainless steel (316L SS), nitinol (Ni-Ti alloy) and cobalt-chromium alloy (Co-Cr) are used as standard stent materials. Additionally, drug-containing coatings are used to provide antithrombotic properties. Nowadays, scientists are trying to create biodegradable stents (BDS) using magnesium (Mg) or zinc (Zn) alloys. Laser methods are generally used to manufacture stents using Nd:YAG lasers with a pulse length in the range of several milliseconds. Material removal is based on the ejection of the melt using a high-pressure gas. The result is remelting and heat-affected zones. Various post-processing procedures are necessary to remove residues, including etching and electropolishing. Minimizing the heat-affected zone could be achieved by using femtosecond lasers. Additionally, immersion of the material in water prevents the deposition of residues on the workpiece. Interesting alternatives used in the manufacture of vascular stents are electrospinning or additive techniques. 3D printing enables obtaining of geometrically complex and personalized implants and reduces the consumption of materials and the production of waste.
Rocznik
Strony
22--28
Opis fizyczny
Bibliogr. 50 poz., tab.
Twórcy
  • Institute of Machines and Materials Technology, Faculty of Mechanical Engineering and Ship Technology, Gdańsk University of Technology, 11/12 Narutowicza Str., 80-233 Gdańsk, Poland
  • Institute of Machines and Materials Technology, Faculty of Mechanical Engineering and Ship Technology, Gdańsk University of Technology, 11/12 Narutowicza Str., 80-233 Gdańsk, Poland
Bibliografia
  • [1] Grygier D.: Wpływ wybranych własności krzemionkowych warstw wierzchnich na możliwości ich zastosowania jako pokrycia na stenty wieńcowe. Politechnika Wrocławska 2008.
  • [2] Borhani S., Hassanajili S., Ahmadi Tafti S.H., Rabbani S.: Cardiovascular Stents: Overview, Evolution, and next Generation; Springer Berlin Heidelberg 7 (2018) 175-205.
  • [3] Hrycek E., Syzdół M., Wojakowski W.: Gojenie i Dysfunkcja Śródbłonka Tętnic Wieńcowych Po Implantacji Stentów Uwalniających Leki Antyproliferacyjne. Via Medica 6 (2011) 44-48.
  • [4] Pietrasik A., Rdzanek A.: Restenoza po zabiegach przezskórnej angioplastyki wieńcowej - przyczyny, rozpoznawanie, postępowanie. Choroby Serca i Naczyń 14 (2017) 352-356.
  • [5] Sun Z., Khlusov I.A., Evdokimov K.E., Konishchev M.E., Kuzmin O.S., Khaziakhmatova O.G., Malashchenko V.V., Litvinova L.S., Rutkowski S., Frueh J., Kozelskaya A.I., Tverdokhlebov S.I.: Nitrogen-Doped Titanium Dioxide Films Fabricated via Magnetron Sputtering for Vascular Stent Biocompatibility Improvement. Journal of Colloid and Interface Science 626 (2022) 101-112.
  • [6] Bakoń A., Brzeziński M.R., Marchlewski P.: Specyfika Mechanicznej Obróbki Wykończeniowej Implantów i Endoprotez. Mechanik 8-9 (2015) 15-19.
  • [7] Korei N., Solouk A., Haghbin Nazarpak M., Nouri A.: A Review on Design Characteristics and Fabrication Methods of Metallic Cardiovascular Stents. Materials Today Communications 31 (2022) 1-23.
  • [8] Ahadi F., Azadi M., Biglari M., Bodaghi M., Khaleghian A.: Evaluation of Coronary Stents: A Review of Types, Materials, Processing Techniques, Design, and Problems. Heliyon 9 (2023) e13575.
  • [9] Pan C., Liu X., Hong Q., Chen J., Cheng Y., Zhang Q., Meng L., Dai J., Yang Z., Wang L.: Recent Advances in Surface Endothelialization of the Magnesium Alloy Stent Materials. Journal of Magnesium and Alloys 11 (2023) 48-77.
  • [10] De Luca G., Smits P., Hofma S.H., Di Lorenzo E., Vlachojannis G.J., van’t Hof A.W.J., van Boven A.J., Kedhi E., Stone G.W., Suryapranata H.: Everolimus Eluting Stent vs First Generation Drug-Eluting Stent in Primary Angioplasty: A Pooled Patient-Level Meta-Analysis of Randomized Trials. International Journal of Cardiology 244 (2017) 121-127.
  • [11] Cheng Q., Shafiq M., Rafique M., Shen L., Mo X., Wang K.: Extracellular Matrix and Nitric Oxide Based Functional Coatings for Vascular Stents. Engineered Regeneration 3 (2022) 149-153.
  • [12] Wawrzyńska M., Duda M., Wysokińska E., Strządała L., Biały D., Ulatowska-Jarża A., Kałas W., Kraszewski S., Pasławski R., Biernat P., Pasławska U., Zielonka A., Podbielska H., Kopaczyńska M.: Functionalized CD133 Antibody Coated Stent Surface Simultaneously Promotes EPCs Adhesion and Inhibits Smooth Muscle Cell Proliferation - A Novel Approach to Prevent in-Stent Restenosis. Colloids and Surfaces B: Biointerfaces 174 (2019) 587-597.
  • [13] Chang F.Y., Liang T.H., Wu T.J., Wu C.H.: Using 3D Printing and Femtosecond Laser Micromachining to Fabricate Biodegradable Peripheral Vascular Stents with High Structural Uniformity and Dimensional Precision. International Journal of Advanced Manufacturing Technology 116 (2021) 1523-1536.
  • [14] Sousa A.M., Amaro A.M., Piedade A.P.: 3D Printing of Polymeric Bioresorbable Stents: A Strategy to Improve Both Cellular Compatibility and Mechanical Properties. Polymers 14 (2022) 1099.
  • [15] Hua W., Shi W., Mitchell K., Raymond L., Coulter R., Zhao D., Jin Y.: 3D Printing of Biodegradable Polymer Vascular Stents: A Review. Chinese Journal of Mechanical Engineering: Additive Manufacturing Frontiers 1 (2022) 1-15.
  • [16] Szustakiewicz K., Kryszak B., Dzienny P., Poźniak B., Tikhomirov M., Hoppe V., Szymczyk‐Ziółkowska P., Tylus W., Grzymajło M., Gadomska‐Gajadhur A., Antończak A.J.: Cytotoxicity Study of UV‐laser‐irradiated PLLA Surfaces Subjected to Bio‐ceramisation: A New Way towards Implant Surface Modification. International Journal of Molecular Sciences 22(16) (2021) 8436.
  • [17] Amani S., Faraji G.: Processing and Properties of Biodegradable Magnesium Microtubes for Using as Vascular Stents: A Brief Review. Metals and Materials International 25 (2019) 1341-1359.
  • [18] Waksman R., Pakala R., Baffour R., Seabron R., Hellinga D., Tio F.: Short-Term Effects of Biocorrodible Iron Stents in Porcine Coronary Arteries. Journal of Interventional Cardiology 21 (2008) 15-20.
  • [19] Jiang J., Huang H., Niu J., Zhu D., Yuan G.: Fabrication and Characterization of Biodegradable Zn-Cu-Mn Alloy Micro-Tubes and Vascular Stents: Microstructure, Texture, Mechanical Properties and Corrosion Behavior. Acta Biomaterialia 151 (2022) 647-660.
  • [20] Niu J., Tang Z., Huang H., Pei J., Zhang H., Yuan G., Ding W.: Research on a Zn-Cu Alloy as a Biodegradable Material for Potential Vascular Stents Application. Materials Science and Engineering: C 69 (2016) 407-413.
  • [21] Wang J., Dou J., Wang Z., Hu C., Yu H., Chen C.: Research Progress of Biodegradable Magnesium-Based Biomedical Materials: A Review. Journal of Alloys and Compounds 923 (2022) 166377.
  • [22] Mochizuki A., Kaneda H.: Study on the Blood Compatibility and Biodegradation Properties of Magnesium Alloys. Materials Science and Engineering C 47 (2015) 204-210.
  • [23] Pan C., Zhao Y., Yang Y., Yang M., Hong Q., Yang Z., Zhang Q.: Immobilization of Bioactive Complex on the Surface of Magnesium Alloy Stent Material to Simultaneously Improve Anticorrosion, Hemocompatibility and Antibacterial Activities. Colloids and Surfaces B: Biointerfaces 199 (2021) 111541.
  • [24] Wang Y., Chen L., Hou R., Bai L., Guan S.: Rapamycin-Loaded Nanocoating to Specially Modulate Smooth Muscle Cells on ZE21B Alloy for Vascular Stent Application. Applied Surface Science 615 (2023) 156410.
  • [25] Saadatlou G. A., Ijaz A., Sipahioğlu D., Surme S., Kavakli I. H., Gurpinar Y., Yalcin O., Motallebzadeh A., Guner P.T.: TetraFunctional Multilayer Coatings for Cardiovascular Stent Materials. Colloids and Surfaces A: Physicochemical and Engineering Aspects 670 (2023) 131571.
  • [26] Li P., Li X., Cai W., Chen H., Chen H., Wang R., Zhao Y., Wang J., Huang N.: Phospholipid-Based Multifunctional Coating via Layerby-Layer Self-Assembly for Biomedical Applications. Materials Science and Engineering: C 116 (2020) 111237.
  • [27] Cheng W., Li C., Ma X., Yu L., Liu G.: Effect of SiO2-Doping on Photogenerated Cathodic Protection of Nano-TiO2 Films on 304 Stainless Steel. Materials & Design 126 (2017) 155-161.
  • [28] Sansone V., Pagani D., Melato M.: The Effects on Bone Cells of Metal Ions Released from Orthopaedic Implants. A Review. Clinical Cases in Mineral and Bone Metabolism 10 (2013) 34-40.
  • [29] Zhu W., Su Z., Guo J., Li K., Chen K., Li W., Yi A., Liao Z., Luo Y., Hu Y., Xu Y., Lin Q., Meng X.: Preparation and Characterization of Diamond-like Carbon (DLC) Film on 316L Stainless Steel by Microwave Plasma Chemical Vapor Deposition (MPCVD). Diamond and Related Materials 122 (2022) 108820.
  • [30] Malisz K., Świeczko-Żurek B., Sionkowska A.: Preparation and Characterization of Diamond-like Carbon Coatings for Biomedical Application - A Review. Materials 16 (2023) 3420.
  • [31] Castellino M., Stolojan V., Virga A., Rovere M., Cabiale K., Galloni M.R., Tagliaferro A.: Chemico-Physical Characterisation and in Vivo Biocompatibility Assessment of DLC-Coated Coronary Stents. Analytical and Bioanalytical Chemistry 405 (2013) 321-329.
  • [32] Saito T., Hasebe T., Yohena S., Matsuoka Y., Kamijo A., Takahashi K., Suzuki T.: Antithrombogenicity of Fluorinated Diamond-like Carbon Films. Diamond and Related Materials 14 (2005) 1116-1119.
  • [33] Nurdin N., François P., Mugnier Y., Krumeich J., Moret M., Aronsson B.-O., Descouts P.: Haemocompatibility Evaluation of DLC- and SiC-Coated Surfaces. European cells & materials 5 (2003) 17-18.
  • [34] Pan C., Han Y., Lu J.: Structural Design of Vascular Stents: A Review. Micromachines 12 (2021) 1-26.
  • [35] Zheng Y., Yang H.: Manufacturing of Cardiovascular Stents. Metallic Biomaterials Processing and Medical Device Manufacturing, Woodhead Publishing 2020.
  • [36] Tammareddi S., Li Q.: Effects of Material on the Deployment of Coronary Stents. Advanced Materials Research 125 (2010) 315-318.
  • [37] Lee P.-Y., Chen Y.-N., Hu J.-J., Chang C.-H.: Comparison of Mechanical Stability of Elastic Titanium, Nickel-Titanium, and Stainless Steel Nails Used in the Fixation of Diaphyseal Long Bone Fractures. Materials (Basel) 11 (2018) 2159.
  • [38] Bucsek A.N., Paranjape H.M., Stebner A.P.: Myths and Truths of Nitinol Mechanics: Elasticity and Tension–Compression Asymmetry. Shape Memory and Superelasticity 2 (2016) 264-271.
  • [39] Tanzi M.C., Farè S., Candiani G.: Biomaterials and Applications. Foundations of Biomaterials Engineering, Academic Press 2019.
  • [40] Chen J., Tan L., Yu X., Etim I. P., Ibrahim M., Yang K.: Mechanical Properties of Magnesium Alloys for Medical Application: A Review. Journal of the Mechanical Behavior of Biomedical Materials 87 (2018) 68-79.
  • [41] De Scheerder I., Sohier J., Wang K., Verbeken E., Zhou X.R., Froyen L., Van Humbeeck J., Piessens J., Van de Werf F.: Metallic Surface Treatment Using Electrochemical Polishing Decreases Thrombogenicity and Neointimal Hyperplasia of Coronary Stents. Journal of Interventional Cardiology 13 (2000) 179-185.
  • [42] Zhao H., Van Humbeeck J., Sohier J., De Scheerder I.: Electrochemical Polishing of 316L Stainless Steel Slotted Tube Coronary Stents. Journal of Materials Science: Materials in Medicine 13 (2002) 911-916.
  • [43] Muhammad N., Li L.: Underwater Femtosecond Laser Micromachining of Thin Nitinol Tubes for Medical Coronary Stent Manufacture. Applied Physics A: Materials Science and Processing 107 (2012) 849-861.
  • [44] Chan Lee J., Hwan In S., Hee Park C., Sang Kim C.: Development of Multi-Layer Membrane Manufacturing Technology for Stent Coating Using Electrospinning Technology. Materials Letters 331 (2023) 133415.
  • [45] Rickel A.P., Deng X., Engebretson D., Hong Z.: Electrospun Nanofiber Scaffold for Vascular Tissue Engineering. Materials Science and Engineering: C 129 (2021) 112373.
  • [46] Feng Y., Chen Y., Chen Y., He X., Khan Y., Hu H., Lan P., Li Y., Wang X., Li G., Kaplan D.: Intestinal Stents: Structure, Functionalization and Advanced Engineering Innovation. Biomaterials Advances 137 (2022) 212810.
  • [47] Chalony C., Erik Aguilar L., Hee Park C., Sang Kim C.: Drug Free Anti-Cell Proliferative and Anti-Platelet Adhesion Coating for Vascular Stents via Polymeric Electrospun Fibers. Materials Letters 291 (2021) 129545.
  • [48] Siemiński P., Budzik G.: Techniki Przyrostowe: Druk 3D. Drukarki 3D; Oficyna Wydawnicza, Politechnika Warszawska (2015).
  • [49] Lei Y., Chen X., Li Z., Zhang L., Sun W., Li L., Tang F.: A New Process for Customized Patient-Specific Aortic Stent Graft Using 3D Printing Technique. Medical Engineering and Physics 77 (2020) 80-87.
  • [50] Okereke M.I., Khalaj R., Tabriz A.G., Douroumis D.: Development of 3D Printable Bioresorbable Coronary Artery Stents: A Virtual Testing Approach. Mechanics of Materials 163 (2021) 104092.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu „Społeczna odpowiedzialność nauki” - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-47b07a87-660e-4e96-b233-ef9fd66b4f96
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.