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Abstract. A steering projection of an arbitrary von Neumann algebra is introduced. It is
shown that a steering projection always exists and is unique (up to Murray-von Neumann
equivalence). A general decomposition of arbitrary projections with respect to a steering
projection is established.
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1. INTRODUCTION

The Murray-von Neumann order (in the set of all (equivalence classes of) projections)
is a useful tool in studies of W ∗-algebras. For example, this order is involved to define
types of von Neumann algebras. In most classical textbooks on operator algebras
(see e.g. [1, 4, 5, 7, 8, 10]) this order is introduced mainly for this purpose. However,
even from a purely set-theoretic point of view the Murray-von Neumann order is an
interesting subject of investigation. Although it was carefully studied by Tomiyama
([11]) and Griffin Jr. ([2, 3]) in general von Neumann algebras, none of the books
mentioned above discusses this topic so generally. The aim of this paper is to give a
new form as well as new proofs of the results by Tomiyama and Griffin Jr.

Our approach concentrates on distinguishing a certain projection, called by us
steering, in an arbitrary von Neumann algebra, which turns out to be unique up to
Murray-von Neumann equivalence. The key property of this projection is the follow-
ing: it allows decomposing any other projection into parts each of which is a ‘cardinal
multiple’ of a part of the steering projection except one part which is a refinement –
see Theorem 4.4 in Section 4. This is the main difference between our approach and
those of [2, 3, 11]. Moreover, for a reader familiar with Tomiyama’s results, it may
be nontrivial that homogenous projections (in the terminology of [11]) of different di-
mensions actually come from a common (steering) projection – which is an immediate
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consequence of our main result. From Theorem 4.4 one can derive that the general-
ized dimension function (see [11]) of the steering projection in a properly infinite von
Neumann algebra is equal to ℵ0 on II∞ and III summands and 1 elsewhere. So, as
a consequence – in that case the steering projection turns out to be ℵ0-homogenous
which may be not transparent in the II∞ case, since our definition in that case is in
a totally different spirit.

In part of the presentation we involve traces on von Neumann algebras of type II1.
To reduce the size of the paper, the existence and fundamental properties of them
are stated without proofs. For details the reader is referred to any of the books cited
above.

The presented material mainly comes from [6]. The idea of steering projections
was introduced therein. Also the approach to the so-called dimension theory of
W ∗-algebras by means of steering projections comes from that paper.

2. PRELIMINARIES

Throughout this paper we will use the following notation: A will (usually) stand for a
von Neumann algebra. The center of A will be denoted by Z(A) and by E(A) we denote
the lattice of all projections in A. Typical projections in A will be denoted usually by
P,Q,R . . . while projections in Z(A) will be denoted by Z. For a projection P ∈ A, CP
will stand for the central carrier of P ; that is, CP is the smallest projection Z ∈ Z(A)
such that P ≤ Z. We briefly recall the basic facts about von Neumann algebras which
will be used constantly:

– The center of any von Neumann algebra is a von Neumann algebra as well.
– Let P ∈ A be a projection in a von Neumann algebra. Then PAP is also a von

Neumann algebra.
– Z(PAP ), the center of PAP , coincides with Z(A)P .
– Let P ∈ A be a (nonzero) projection. Then P is properly infinite if and only if
P =

∑
n∈N Pn where each Pn ∼ P .

Definition 2.1. We say that two projections P,Q ∈ A are Murray-von Neumann
equivalent if there exists V ∈ A such that:

V ∗V = P, V V ∗ = Q. (2.1)

Then we will write P ∼ Q. Given two projections P,Q in A we will write P � Q iff
P ∼ Q0 for a certain subprojection Q0 ≤ Q belonging to A.

The next theorem is one of the most important tools in dealing with Murray-von
Neumann order. Its proof may be found in [5] (Theorem 6.2.7) or [10] (Chapter V,
Theorem 1.8).

Theorem 2.2 (Comparison Theorem). For any pair P,Q ∈ A of projections there
exists a central projection Z ∈ A such that

QZ � PZ, P (I − Z) � Q(I − Z).
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Definition 2.3. For a cardinal number α, a projection P ∈ A is called α-decomposable
(in A) if the cardinality of any family of mutually orthogonal nonzero subprojections
Qi ∈ A of P is at most α. For α = ℵ0 we call P countably decomposable.

The following result will allow us to define the so-called steering projection in a
type III von Neumann algebra. For the proof see [5, Theorem 6.3.4].

Theorem 2.4. Suppose that P,Q ∈ A are two projections, P is properly infinite and
Q is countably decomposable. If CQ ≤ CP , then Q � P .

Recall that a projection P in a von Neumann algebra A acting on a Hilbert space
H is called cyclic when P (H) = A′x for some vector x ∈ H. Then we have the
following result (Lemma 6.3.9 in [5]):

Theorem 2.5. Suppose that {Pi}i∈J1 and {Qj}j∈J2 are two infinite families consist-
ing of mutually orthogonal nonzero projections, each Pi is cyclic and Q � P where
Q :=

∑
j∈J2 Qj , P :=

∑
i∈J1 Pi. Then |J1| ≤ |J2|. If moreover each Qj is cyclic and

P ∼ Q then |J1| = |J2|.
Remark 2.6. Theorem 2.5 is valid for infinite orthogonal families of cyclic projections
as well as for families of countably decomposable projections. This follows from the
fact that each nonzero projection is the sum of a family of nonzero cyclic projections
(see for instance [4, Theorem 5.5.9]) – so, in case of a countably decomposable projec-
tion this family is countable. So, an infinite family of nonzero countably decomposable
projections may be replaced by a family of nonzero cyclic projections without changing
the sum and the cardinality.

For the proof of the next result consult [5, Theorem 6.3.11].

Theorem 2.7 (Generalized Invariance of Dimension). Suppose that P,R ∈ A are two
projections and R is finite and nonzero. Let P = {Pi}i∈J1 and Q = {Qj}j∈J2 be two
orthogonal families of subprojections of P maximal with respect to the property:

Pi ∼ Qj ∼ R, i ∈ J1, j ∈ J2.

Then |J1| = |J2|.
Definition 2.8. A projection P ∈ A is called abelian if PAP is a commutative von
Neumann algebra.

We briefly recall some basic properties of abelian projections (see [5] for a detailed
presentation).

Let P,Q,R ∈ A be three projections with P and R abelian. Then:

– if Q ≤ P , then Q = CQP ,
– P is finite,
– if Q ∼ P , then Q is also abelian,
– if CR = CP , then R ∼ P .

The next result is of key importance. For the proof (of a slightly more general
version than that presented below) see [5, Theorem 6.5.2].
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Theorem 2.9 (Type Decomposition). Let A be a von Neumann algebra acting on a
Hilbert space H. There are mutually orthogonal central projections

ZI, ZII1 , ZII∞ , ZIII

with sum I and such that either Zε = 0 or AZε is a type ε von Neumann algebra
where ε ∈ {I, II1, II∞, III}.

3. STEERING PROJECTION

The aim of this part is to define a steering projection in an arbitrary von Neumann
algebra, which, in a sense, controls the Murray-von Neumann order in the algebra.
Since its definition depends on the type of the algebra, it will be given separately for
each type. The simplest cases include types I and II1, whereas the case of type II∞
algebras is most involved.

Definition 3.1.

(a) If A is a type II1 von Neumann algebra, we will simply call the identity of A the
steering projection.

(b) If A is a type I von Neumann algebra, a projection P ∈ A is called a steering
projection if P is abelian and CP = I.

Definition 3.2 ([6]). A von Neumann algebra A is called quasi-abelian if for every
projection P ∈ A the relation P ∼ CP holds. A projection P is called quasi-abelian if
P = 0 or PAP is a quasi-abelian von Neumann algebra.

Definition 3.3. Assume A is a type III von Neumann algebra. A projection P ∈ A
is called a steering projection if P is quasi-abelian and CP = I.

The existence as well as uniqueness (up to equivalence) of steering projections in
type I and II1 von Neumann algebras can easily be established. It appears that similar
properties hold for type III algebras, but they are not so obvious. To establish them,
we need the following auxiliary result.

Lemma 3.4. If P ∈ A is a projection, then the following conditions are equivalent:

(i) P is quasi-abelian,
(ii) Q ∼ PCQ for every subprojection Q ≤ P ,
(iii) for a projection Q we have that P � Q ⇐⇒ P ≤ CQ.
Proof. Suppose that P is quasi-abelian and Q ≤ P . Since PAP is quasi-abelian,
Q ∼PAP C ′Q where the latter projection is the central carrier of Q computed with
respect to PAP . But C ′Q = PCQ, so Q ∼ PCQ. This shows that (ii) follows from (i).
The reverse implication is proved similarly.

To show that (iii) follows from (ii), suppose that

P ≤ CQ. (3.1)

If P = 0, we are done; so, let P 6= 0. Let {Pi}i∈I be a maximal family of projections
with the following properties:
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a) each Pi is a nonzero subprojection of P ,
b) Pi � Q for every i ∈ I,
c) for i 6= j we have PCPiCPj = 0 (in particular, Pi’s are mutually orthogonal).

It follows from the maximality and (3.1) that P =
∑
i∈I PCPi

. Note also that
CCPi

CPj
P = CPi

CPj
CP = 0 (because CPi

CPj
P = 0) which means that {CPi

CP }i∈I
is orthogonal. From our assumption, condition Pi ≤ P implies Pi ∼ CPi

P ; thus
CPiP � Q and (CPiCP )CPiP = CPiP � CPiCPQ. This yields

P =
∑

i∈I
CPi

P �
∑

i∈I
(CPi

CP )Q ≤ Q.

The reverse implication in (iii) needs no additional assumptions: P � Q implies
P � CQ and thus P ≤ CQ.

It remains to prove (ii) under the assumption of (iii): let Q ≤ P and consider the
projection R := Q+ (I − CQ)P . Then

CR = CQ+(I−CQ)P = CQ ∨ C(I−CQ)P = CQCP ∨ (I − CQ)CP

=
(
CQ ∨ (I − CQ)

)
CP = CP ≥ P.

This yields, from (iii), that P � R, thus CQP � CQR = CQQ+CQ(I −CQ)P = Q ≤
CQP , i.e. Q ∼ CQP .

Theorem 3.5. Suppose A is a type III von Neumann algebra. Then A has a steering
projection. Any two steering projections are equivalent.

Proof. Let {Pi}i∈I be a maximal family of nonzero projections with properties:

a) CPi
CPj

= 0 for i 6= j,
b) each Pi is countably decomposable.

Put P :=
∑
i∈I Pi and observe that CP = I. This follows from the maximality

of the above family and the fact that every nonzero projection contains a nonzero
subprojection which is countably decomposable (recall that any cyclic projection is
such). Now observe that each Pi is quasi-abelian: taking into account the previous
lemma, it is enough to show that for a projection Qi ≤ Pi we have Qi ∼ CQi

Pi.
Since we are working in a type III von Neumann algebra, all projections are properly
infinite, so, by Theorem 2.4, it is enough to show that CQi = CCQi

Pi . But the latter
is equal to CQi

CPi
= CQi

. It remains to note that P is also quasi-abelian. In fact, for
Q ∈ PAP of the form Q =

∑
i∈I PiQ0Pi we have that:

CQ = C∑
i∈I PiQ0Pi

=
∑

i∈I
CPiQ0Pi ∼

∑

i∈I
PiQ0Pi = Q.

For uniqueness, note that if P,Q are steering, then both are quasi-abelian and
P ≤ CQ = I = CP ≥ Q, thus, by the previous lemma, P � Q and Q � P and
consequently P ∼ Q.
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We turn to deal with the last case – when A is a type II∞ von Neumann al-
gebra. First, let us introduce the following notation: for a projection Q ∈ A and
n ∈ {1, 2, . . .} ∪ {ω}, by n�Q we denote any projection of the form

∑n
k=1Qk where

each Qk ∼ Q (when n = ω, we think of the sum
∑∞
k=1Qk). If n = 0 we put simply

n � P := 0. For example, any properly infinite projection P could be written as
P = ω � P .

We shall first establish some properties of the trace concerning the Murray-von
Neumann order. They will be applied later. (Confront Lemma 3.7 with Theorem 8.4.4
in [5].)

Theorem 3.6. Let A be a finite von Neumann algebra and tr : A→ Z(A) denote its
(unique) trace. If P,Q ∈ E(A), then:

(a) P � Q ⇐⇒ tr(P ) ≤ tr(Q),
(b) P ∼ Q ⇐⇒ tr(P ) = tr(Q).

Lemma 3.7. If A is a type II1 von Neumann algebra, tr : A → Z(A) is its trace,
P ∈ A is a projection and Z ∈ A is a central element (not necessarily a projection)
with 0 ≤ Z ≤ tr(P ), then there is a projection Q ≤ P such that tr(Q) = Z.

Proposition 3.8. Suppose that A is a type II∞ von Neumann algebra and E is a
finite projection in A. Let tr : EAE → Z(EAE) be the trace on EAE. If P and Q are
two projections in EAE and tr(P ) ≤ n · tr(Q) (where n is a positive integer), then
P � n�Q in A.

Proof. We will show the existence of a sequence of mutually orthogonal projections
P1, P2, . . . , Pn such that

∑n
i=1 Pi = P and tr(Pi) = 1

n tr(P ) for i = 1, 2, . . . , n. Using
Lemma 3.7 we find a projection P1 ≤ P with tr(P1) = 1

n tr(P ). Suppose that we
have already constructed mutually orthogonal projections P1, . . . , Pk, (k < n) with
the properties:

∑k
i=1 Pi ≤ P and tr(Pi) = 1

n tr(P ). Then P −∑k
i=1 Pi is a projection

with:

tr
(
P −

k∑

i=1

Pi

)
=
n− k
n

tr(P ) ≥ 1

n
tr(P ).

Again, by Lemma 3.7 we can find a projection Pk+1 ≤ P −
∑k
i=1 Pi with tr(Pk+1) =

1
n tr(P ). After the construction we know that P1 + P2 + . . .+ Pn ≤ P and

tr(P1 + P2 + . . .+ Pn) = tr(P1) + tr(P2) + . . .+ tr(Pn) = n · 1

n
tr(P ) = tr(P ).

From the faithfulness of the trace we conclude that

P1 + P2 + . . .+ Pn = P.

By virtue of Theorem 3.6 we have:

(i) Pj ∼ Pk for j, k ∈ {1, . . . , n} and consequently P ∼ n� P1,
(ii) tr(P1) ≤ tr(Q), thus P1 � Q.

From (i) and (ii) we infer that P ∼ n� P1 � n�Q.
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Lemma 3.9. Let A be a type II∞ von Neumann algebra. For a projection P ∈ A the
following conditions are equivalent:

(i) P is finite,
(ii) for any projection Q ∈ A, P ≤ CQ iff there is a sequence of central projections
{Zn}n∈N such that

∑
n∈N Zn = I and PZn ≤ n�Q for each n.

Proof. Assume (ii) holds for a projection P ∈ A. Choose Q0 ∈ A to be a finite
projection with CQ0

= I. Since then P ≤ CQ0
, (ii) allows us to find central projections

Z1, Z2, . . . such that PZn ≤ n�Q0. Since n�Q0 is finite, thus PZn is finite as well
and hence P =

∑
n∈N PZn is also finite. Conversely, if P is finite and P ≤ CQ, we

can find a family {Qi}i∈I of mutually orthogonal projections such that P =
∑
i∈I Qi

and for all i ∈ I relation Qi � Q holds. Since P is finite, there is a (unique) trace
tr : PAP → Z(PAP )(= Z(A)P ). For each Qi we find central (in A) projections Zi,n,k,
n ∈ N, k = 1, . . . , 2n such that:

tr(Qi) =

∞∑

n=1

2n∑

k=1

k

2n
Zi,n,kP.

(This can simply be deduced from the commutative Gelfand-Naimark theorem and
the total disconnectedness of the Gelfand spectrum of Z(A).) From the above equality
we obtain tr(Zi,n,kP ) ≤ 2ntr(Qi). We infer from Proposition 3.8 that

Zi,n,kP � 2n �Qi � 2n �Q.
Moreover, by

P = tr(P ) =
∑

i∈I
tr(Qi) =

∑

i∈I

∞∑

n=1

2n∑

k=1

k

2n
Zi,n,kP

we have PZ = P and thus Z ≥ P where Z :=
∨
i,n,k Zi,n,k (these projections need not

be mutually orthogonal!). Reindexing the family {Zi,n,k}i,n,k we obtain a collection
{Cj}j∈J of central projections with PCj � nj � Q and C :=

∨
j∈J Cj ≥ P . Now

equip J with a well ordering and denote by j0 its first element. We put C ′j0 := Cj0
and if C ′j ’s are already defined for all j < l, then we put C ′l := Cl(I−

∑
j<l Cj). Then

C ′l ≤ Cl, the family {C ′j}j∈J is orthogonal and
∑
j∈J C

′
j = C. We define C ′∞ := I−C.

Then the family {Ck}k∈K where K := J ∪ {∞} is still orthogonal,∑k∈K C
′
k = I and

PC ′k � nk�Q for each k ∈ K (since PC ′∞ = P−PC = 0, we may take any number for
n∞, e.g. n∞ := 1). Putting Zn :=

∑{C ′k : nk = n}, we get the desired sequence.

Proposition 3.10. Let A be a type II∞ and

Eω(A) := {Q ∈ E(A) : Q ∼ ω � P for some finite projection P}.
Then:

(i) if P ∈ Eω(A) and Z is a central projection, then PZ ∈ Eω(A),
(ii) for P ∈ Eω(A) and a properly infinite projection Q we have P � Q ⇐⇒

P ≤ CQ,
(iii) if P ∈ Eω(A) satisfies CP = I, then Q ∼ CQP for every Q ∈ Eω(A).
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Proof. (i) Let P ∼ ω � P0 where P0 is finite. This allows us to write P =
∑∞
n=1 Pn

where Pn ∼ P0 for n ∈ N. Then PZ =
∑∞
n=1 PnZ and PnZ ∼ P0Z for n ∈ N

(obviously P0Z is still finite).
(ii) Suppose that P ≤ CQ. Take a finite projection P0 such that P ∼ ω � P0

and find, using Lemma 3.9, a sequence {Zn}∞n=1 of central projections such that
P0Zn � n�Q. Since Q is properly infinite, then Q ∼ ω �Q and thus we get:

P0Zn � n�Q � ω �Q ∼ Q.

The above holds for any n ∈ N, thus ∑∞n=1 P0Zn = P0 � Q. Consequently

P ∼ ω � P0 � ω �Q ∼ Q.

(iii) If P,Q ∈ Eω(A), then (in particular) P,Q are properly infinite and Q ≤ CP (=
I). So, we can use (ii) to get Q � P and consequently Q � CQP . As CQP ∈ Eω(A)
by (i), in order to prove CQP � Q it is enough to show that CQ ≥ CCQP . But CCQP

is equal to CQCP = CQ and the assertion follows.

Definition 3.11. Suppose that A is a type II∞ von Neumann algebra. Then P ∈ A
is called a steering projection if P ∈ Eω(A) and CP = I.

Theorem 3.12. Let A be a type II∞ von Neumann algebra. Then A has a steering
projection and any two steering projections are equivalent.

Proof. Since I is properly infinite, for any Q ∈ E(A), ω�Q makes sense. Now take a
finite projection P0 ∈ A such that CP0

= I and form P := ω � P0. Then P ∈ Eω(A)
and still CP = I. This establishes the existence. To deal with the uniqueness assume
that P,Q are both steering. Then they both belong to Eω(A) and P ≤ CQ(= I)
and Q ≤ CP (= I), so we can use Proposition 3.10 to get P � Q and Q � P , i.e.
P ∼ Q.

We have defined a steering projection in a von Neumann algebra of any of types:
I, II1, II∞, III. Now, if A is an arbitrary von Neumann algebra, then we define a steering
projection to be the sum of steering projections of AZI, AZII1 , AZII∞ , AZIII where
Zε is defined as in Theorem 2.9 for ε ∈ {I, II1, II∞, III}.

As a consequence of the results of this section, we get

Theorem 3.13. An arbitrary von Neumann A algebra has a steering projection. Any
two steering projections in A are equivalent. If P is a steering projection in A, then
CP = I and for any nonzero central Z ∈ E(A) the projection PZ is steering in AZ.

The proof is left to the reader.

4. GENERAL DECOMPOSITION

Before formulating the main theorem, we need some auxiliary results, which are how-
ever interesting in themselves. By Card we mean the class of all cardinal numbers,
while Card∞ is its subclass of infinite cardinals. For α ∈ Card by α+ we denote the



Steering projections in von Neumann algebras 259

immediate successor of α. The notation of the form ‘Q ∼ α � P ’ (where P and Q
are projections in a common von Neumann algebra and α ∈ Card) means that Q
may be written in the form Q =

∑
s∈S Qs where Qs ∼ P for all s ∈ S and |S| = α.

In particular, Q ∼ 0 � P is equivalent to Q = 0. We start with the following result
(which may be seen as a variation of Lemma 1 in [11], Theorem 2 in [2] and Lemma
1.2 in [3]).

Lemma 4.1. Let A be a von Neumann algebra of type ε where ε ∈ {I, II∞, III} and
P be a steering projection in A. Suppose that the projections Q,Q′ satisfy: Q ∼ α�P
and Q′ ∼ β�P where α, β ∈ Card∞ ∪{0}. Then Q ∼ Q′ ⇐⇒ α = β. If A is of type
I, then the statement is valid for any α, β ∈ Card.

Proof. The ‘if’ part is obvious. Further, if, for example, α = 0, then 0 = Q ∼ Q′,
so Q′ = 0 and β = 0. We therefore assume that α, β > 0 and consider three cases,
namely when A is of type ε with:

– ε = I; then a steering projection is defined to be abelian, hence finite. Since

α� P ∼ Q ∼ Q′ ∼ β � P,

so, by Theorem 2.7 we get α = β. (Note that we have not used the fact that α, β
are infinite.)

– ε = II∞; in this case P ∼ ω � P0 for some finite projection P0. We have then,
using the fact that α, β are infinite:

Q ∼ α� P ∼ α� (ω � P0) = (α · ℵ0)� P0 = α� P0,

and similarly Q′ ∼ β � P0. As P0 is finite, we are in the same situation as from
the previous step and we obtain α = β (by Theorem 2.7).

– ε = III; from the proof of Theorem 3.5 we know that P =
∑
i∈I Pi where each Pi

is countably decomposable and {Pi}’s are centrally orthogonal, i.e. CPi
CPj

= 0
for i 6= j. Choose i0 ∈ I and denote for simplicity Z := CPi0

. Then

PZ =
∑

i∈I
PiZ = Pi0Z +

∑

i6=i0
PiZ︸︷︷︸

0

= Pi0

and thus we obtain

QZ ∼ (α� P )Z ∼ α� PZ = α� Pi0 ∼

∼ Q′Z ∼ (β � P )Z ∼ β � PZ = β � Pi0 .
Now, using Remark 2.6 (see also Theorem 2.5), we obtain α = β.

Proposition 4.2. Suppose that A is a von Neumann algebra of type ε where ε ∈
{I, II∞, III} with a steering projection P , Q is a properly infinite projection and α ∈
Card∞∪{0}. Assume that the following condition is satisfied: α�P � Q and for any
central 0 6= Z ∈ E(A), QZ does not contain α+ copies of PZ, i.e. α+ � PZ � QZ.
Then Q ∼ α � P . If A is of type I, the assumption for Q being properly infinite can
be dropped and α may be taken arbitrary.
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Proof. Step 1. First we will show that there is a central projection Z 6= 0 such that:

QZ ∼ α� PZ. (4.1)

Case α = 0. With our assumptions we have that

P � Q ⇐⇒ CQ = I. (4.2)

Indeed, if ε ∈ {I, III}, then P is quasi-abelian (even abelian for ε = I), thus
P � Q ⇐⇒ P ≤ CQ (by Lemma 3.4), but the latter inequality is equivalent to
CP ≤ CQ. Since P is steering, so CP = I which yields (4.2). In case ε = II∞ we
are assuming that Q is properly infinite and P , being a steering projection, belongs
to Eω(A), so again we have P � Q ⇐⇒ P ≤ CQ, this time by Proposition 3.10. The
argument as above gives (4.2). As we assumed that α = 0, i.e. Q contains no copy of
P , we have P � Q; so, from (4.2) we obtain CQ 6= I. Taking Z := I − CQ 6= 0 we
have

QZ = Q−QCQ = 0 ∼ 0� (PZ).

Case α > 0. From our assumption, there exists an orthogonal family {Pi}i∈I0 with
|I0| = α such that each Pi ∼ P , Pi ≤ Q. We extend this family to a maximal family
{Pi}i∈I with all the above properties – the fact that we still have |I| = α follows from
the assumption about Q (in the case when ε = I and α is finite the first family is
already maximal). If it happens that Q =

∑
i∈I Pi(= α� P ) then putting Z := I we

get (4.1). Suppose now that Q′ := Q−∑i∈I Pi 6= 0. By the maximality of the family
{Pi}i∈I we have P � Q′ and by the Comparison Theorem, we find a nonzero central
projection Z such that Q′Z ≺ PZ. It turns out that this Z can be taken to fulfill (4.1)
for ε ∈ {II∞, III}. Indeed, for those ε the steering projection P is properly infinite, so
PZ is also properly infinite and the same is true for Pi0Z (being equivalent to PZ;
here i0 ∈ I is fixed). Moreover, Q′Z � Pi0Z and since Q′ ⊥ Pi0 , also Q′Z ⊥ Pi0Z.
Putting these facts together we obtain

Pi0Z � Q′Z + Pi0Z � 2� Pi0Z ∼ Pi0Z ∼ PZ,

hence all of the above components are equivalent. In particular,

QZ = Q′Z +
∑

i∈I
PiZ = Q′Z + Pi0Z +

∑

i 6=i0
PiZ ∼ α� P.

It remains to investigate the case when ε = I. Now P is no longer properly infinite.
As before, we have Q′Z � PZ and

QZ = Q′Z +
∑

i∈I
PiZ.

If it happens that Q′Z = 0 then we are already done, because

QZ =
∑

i∈I
PiZ ∼ α� P.
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So, assume that Q′Z 6= 0 and form 0 6= Z ′ := CQ′Z = ZCQ′ ≤ Z. This implies that

Q′Z ′ = Q′ZZ ′ � PZZ ′ = PZ ′ ∼ Pi0Z ′

for each i0 ∈ I meaning that there is P ′ with

Q′Z ′ ∼ P ′ ≤ Pi0Z ′ ≤ Pi0 .

Recall that now P is abelian (in particular quasi-abelian) so by Lemma 3.4 we have

P ′ = CP ′Pi0 . (4.3)

But observe that since P ′ ∼ Q′Z ′, thus we have

CP ′ = CQ′Z′ = Z ′CQ′ = ZCQ′CQ′ = ZCQ′ = Z ′,

so (4.3) turns out to be P ′ = Pi0Z
′. This means that

Q′Z ′ ∼ P ′ = Pi0Z
′ ∼ PZ ′,

so we have that
QZ ′ = Q′Z ′︸ ︷︷ ︸

∼PZ′

+
∑

i∈I
PiZ

′
︸︷︷︸
∼PZ′

∼ (α+ 1)� PZ ′.

In the case when α is infinite this yields QZ ′ ∼ α � PZ ′, while in case of finite α
we obtain a contradiction with the fact that Q′Z 6= 0. In that case we conclude that
Q′Z = 0, which was discussed before.
Step 2. Let {Zj}j∈J be a maximal family of nonzero central projections such that for
each j ∈ J we have QZj ∼ α� PZj . Then we obtain

Q

(∑

j∈J
Zj

)
=
∑

j∈J
QZj ∼

∑

j∈J
α� PZj ∼ α� P

(∑

j∈J
Zj

)
.

We will show that
∑
j∈J Zj = I. Assume the contrary, i.e. Z ′ := I −∑j∈J Zj 6= 0.

Form A0 := AZ ′. Note that A0 is again a von Neumann algebra of type ε and denote
by P ′ := PZ ′ a steering projection for A0 (see Theorem 3.13) and Q′ := QZ ′. Take
0 6= Z ∈ Z(A0). In particular, Z ≤ Z ′ and

Q′Z = QZ ′Z = QZ and P ′Z = PZ ′Z = PZ. (4.4)

It follows from our assumption that QZ does not contain α+ copies of PZ so, by
(4.4), Q′Z does not contain α+ copies of P ′Z. Moreover, Q contains α copies of P
and consequently Q′ = QZ ′ contains α copies of PZ ′ = P ′. So, all assumptions of
the theorem are satisfied for A0 and Q′, thus we can apply Step 1 for A0 and find
0 6= Z0 ∈ Z(A0) such that

QZ0 = QZ ′Z0 = Q′Z0 ∼ α� P ′Z0 = α� PZ ′Z0 = α� PZ0.

Since Z0 ≤ Z ′ = I−∑j∈J Zj , thus Z0 is orthogonal to all of Zj ’s and this contradicts
the maximality of the taken family. As a consequence,

∑
j∈J Zj = I.
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Lemma 4.3. Let A be a von Neumann algebra, (X,≤X) be a well ordered set with
maximal and minimal elements xmax, xmin and {Zx}x∈X ⊂ Z(A) be a family of central
projections. Suppose that this family satisfies the following conditions:

a) if x ≤X y, then Zx ≥ Zy,
b) for any limit element x ∈ X \ {xmin}, Zx =

∧
y<x Zy.

Denote Wx := Zx − Zx+ for x 6= xmax (where x+ is the immediate successor of x).
Then

∑
x 6=xmax

Wx = Zxmin
− Zxmax

.

Proof. The proof is by transfinite induction: we claim that for x ∈ X we have
∑

y<Xx

Wy = Zxmin
− Zx. (4.5)

For x = xmin both sides of (4.5) are equal to 0 (we use the convention that the
summation over the empty set is 0).

For a successor element x = y+ we are assuming that
∑
t<Xy

Wt = Zxmin − Zy,
so: ∑

t<Xx

Wt =
∑

t<Xy

Wt +Wy = Zxmin
− Zy + Zy − Zy+ = Zxmin

− Zx.

Finally, let x 6= xmin be a limit element. From the transfinite induction hypothesis
we have

∑
t<Xy

Wt = Zxmin
− Zy for every y < x. We claim that

∑

t<Xx

Wt =
∨

y<Xx

∑

t<Xy

Wt. (4.6)

To prove (4.6), observe that obviously
∑
t<Xy

Wt ≤
∑
t<Xx

Wt and if for each y <X x

we have
∑
t<Xy

Wt ≤ W , then in particular Wy ≤ W (just put y+ in place of y), so
WyW = Wy and thus (

∑
y<Xx

Wy)W =
∑
y<Xx

WyW =
∑
y<Xx

Wy which means
that

∑
y<Xx

Wy ≤W and proves (4.6). Now we compute:

∑

t<Xx

Wt =
∨

y<Xx

(Zxmin
− Zy) = Zxmin

−
∧

y<Xx

Zy = Zxmin
− Zx.

Thus, we have established that (4.5) is valid for any x ∈ X. Put x := xmax to get the
assertion.

For the purpose of the next result, let ΛI = Card, ΛII = {0, 1} ∪ Card∞ and
ΛIII = {0} ∪ Card∞.

The next result comes from the treatise [6], where it is one of the most important
tools, but not the main aim and therefore it was stated with no proof. However, this
result is interesting in its own right. Thus, in the opinion of both the authors – of [6]
and of the present paper, the proof of this result should be found in the literature.

Theorem 4.4. Let P be a steering projection in a von Neumann algebra A and denote
by ZI, ZII, ZIII the central projections such that ZI +ZII +ZIII = I and AZi is of type
i for i ∈ {I, II, III}. Additionally, let ZII1 ∈ Z(A) be such that ZII1 ≤ ZII, AZII1 is of
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type II1 and ZII −ZII1 is properly infinite. Then for each Q ∈ E(A) there is a unique
system of central projections

{ZI
α(Q)}α∈ΛI ∪ {ZII

α (Q)}α∈ΛII ∪ {ZIII
α (Q)}α∈ΛIII

with the following properties:

a) Zi =
∑
α∈Λi

Ziα(Q) for i = I, II, III,
b) for α ∈ Λi with (i, α) 6= (II, 1): Ziα(Q)Q ∼ α� Ziα(Q)P ,
c) (i) ZII

1 (Q)Q is finite,
(ii) if W is a nonzero central projection and W ≤ ZII

1 (Q), then WQ 6= 0,
(iii) (ZII − ZII1)ZII

1 (Q)P ∼ ω � (ZII − ZII1)ZII
1 (Q)Q.

Proof. Existence. Step 1. First we deal with the II1 part. Define

ZII
1 (Q) :=

∨
{W ≤ ZIICQ : WQ is finite}.

Then ZII
1 (Q)Q is finite. Obviously, ZII

1 (Q) ≤ CQ and hence if W ≤ ZII
1 (Q) ≤ CQ is

central and nonzero, then CWQ = WCQ = W 6= 0, which yields WQ 6= 0. For the
last property of point (c), observe that ZII − ZII1 is properly infinite (or 0), so the
same is true for (ZII −ZII1)ZII

1 (Q), thus (ZII −ZII1)ZII
1 (Q)P is a steering projection

(if nonzero!) in some type II∞ von Neumann algebra (call it Ã). From the fact that
ZII

1 (Q)Q is finite, we conclude that (ZII−ZII1)ZII
1 (Q)Q is finite and its central carrier

is equal to
(ZII − ZII1)ZII

1 (Q)CQ = (ZII − ZII1)ZII
1 (Q)

being the identity of Ã. Hence from the properties of steering projections in type II∞
von Neumann algebras we have that

(ZII − ZII1)ZII
1 (Q)P ∼ ω � (ZII − ZII1)ZII

1 (Q)Q.

We also conclude that

(ZII − ZII
1 (Q))CQ ≤ (ZII − ZII1)CQ. (4.7)

Indeed, (4.7) is equivalent to

ZII1CQ ≤ ZII
1 (Q)CQ = ZII

1 (Q) (4.8)

and this follows from the definition of ZII
1 (Q) since ZII1Q = ZII1CQQ is finite (≤ ZII1)

and ZII1CQ ≤ ZIICQ.
Step 2. Now we set Zi0(Q) := Zi(I − CQ). It is then immediate that Zi0(Q)Q = 0 i.e.

Zi0(Q)Q ∼ 0� Zi0(Q)P.

Define
Ei := Zi − Zi0(Q), i = I, III,

EII := ZII − ZII
0 (Q)− ZII

1 (Q),
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(note that EII is indeed a projection, since ZII
0 (Q) ≤ I − CQ and ZII

1 (Q) ≤ CQ).
Direct calculations show that Ei = ZiCQ for i = I, III. For i = II we have that

EII ≤ (ZII − ZII1)CQ.

In fact, since ZII1CQ ≤ ZII
1 (Q)CQ, we have:

EII = ZIICQ − ZII
1 (Q) =

(
ZII − ZII

1 (Q)
)
CQ ≤ (ZII − ZII1)CQ.

Finally, EIIQ is properly infinite (or 0): to see this, take a nonzero central projection
W ≤ EII. Obviously W ≤ ZII and also (by the above argument) W ≤ CQ, thus
W ≤ ZIICQ. S, if WQ is finite, then W ≤ ZII

1 (Q) and simultaneously W ≤ EII

yielding a contradiction. Thus WQ is infinite and this means that EIIQ is properly
infinite.

For 0 6= α ∈ Λi such that (i, α) 6= (II, 1) let

Eiα :=
∨
{W ≤ Ei : W ∈ Z(A), α�WP �WQ}.

The projections Eiα have the following properties:

(i) if α ≥ β, then Eiα ≤ Eiβ (indeed, if α �WP � WQ, then of course β �WP �
WQ);

(ii) α� EiαP � Eiα. To see this, write Eiα as Eiα =
∨
s∈SWs where for each s ∈ S it

holds
α�WsP �WsQ. (4.9)

We can find an orthogonal family {Vs}s∈S ⊂ Z(A) ∩ E(A) such that Vs ≤ Ws

(s ∈ S), and Eiα =
∑
s∈S Vs. From (4.9) we conclude that

Vs(α�WsP ) ∼ α� VsP � VsWsQ = VsQ

and therefore summing up gives
∑

s∈S
(α� VsP ) ∼ α�

∑

s∈S
VsP = α� EiαP �

∑

s∈S
VsQ = EiαQ.

(iii) If α is a limit (and not the first) element1) in Λi \{0}, i = I, III (in Λi \{0, 1} for
i = II), then Eiα =

∧{Eiβ : β < α, β 6= 0, (i, β) 6= (II, 1)}. For the proof denote
by Z the right-hand side of the above relation and note that Eiα ≤ Z: indeed,
from (i) we have Eiα ≤ Eiβ for β < α, so Eiα ≤ Z. For the converse, we will show
that Z contains α� PZ. If Z = 0, then it is trivial. For Z 6= 0 we have PZ 6= 0
since CP = I and

CPZ = ZCP = ZI = Z 6= 0.

Clearly (when β < α) Z ≤ Eiβ and, as β � EiβP � Eiβ therefore we get:

Z(β � EiβP ) = β � PZ � EiβZ = Z, (4.10)

1) For example, ℵ0 is a limit cardinal, but it is not a limit element in ΛIII.
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in other words, Z contains β�PZ. But α =
∑

06=β<α β (in case i = II we exclude
β = 1, all considered β will be called admissible). Denote by {Pt}t∈T a maximal
orthogonal family of subprojections of Z with the property that Pt ∼ PZ for
t ∈ T (in particular Pt 6= 0). We claim that |T | ≥ α. To show this, it is enough to
show that |T | ≥ β for each admissible β < α (because α is limit). From (4.10),
there exists a maximal orthogonal family {Qs}s∈S of subprojections of Z such
that Qs ∼ PZ for each s ∈ S and |S| ≥ β. Arguing as in the proof of Lemma 4.1
we conclude |T | = |S| ≥ β and we are done.

We have showed that the assumptions of Lemma 4.3 are satisfied. Therefore we
can form Ziα(Q) := Eiα − Eiα+ and with the help of this lemma conclude that:

∑

α∈Card∞

Ziα(Q) = Eiℵ0 , i = II, III and
∑

α>0

ZI
α(Q) = EI

1 (4.11)

(note that the second term is missing, because Eiα = 0 for sufficently large α, for
example α := |E(A)|+).

We claim that
Ziα(Q)Q ∼ α� Ziα(Q)P. (4.12)

If Ziα(Q) = 0 then (4.12) is valid, so we assume that Ziα(Q) 6= 0. Define

Q̃ := Ziα(Q)Q and P̃ := Ziα(Q)P 6= 0.

Then P̃ becomes a steering projection in Ã := AZiα(Q). As Ziα(Q) ≤ Eiα and α �
EiαP � EiαQ, we conclude that:

Ziα(Q)(α� EiαP ) = α� Ziα(Q)P = α� P̃ � Ziα(Q)Q = Q̃.

Now take W ∈ Z(Ã). Then in particular W ∈ Z(A) and W ≤ Ziα(Q). The latter gives
WEiα+ = 0. So, if W 6= 0, we cannot have W ≤ Eiα+ and thus WQ = WQ̃ does
not contain α+ � WP = α+ � WP̃ . Thus we have shown that all assumptions of
Proposition 4.2 are satisfied and therefore

Q̃ ∼ α� P̃ .

To complete the proof of the existence, it remains to show that

EI
1 = EI and Eiℵ0 = Ei, i = II, III. (4.13)

(Once we have (4.13) we conclude that:
∑

α∈Λ1

ZI
α(Q) = ZI

0(Q) +
∑

α>0

ZI
α(Q) = ZI

0(Q) + EI
1 = ZI

0 + EI = ZI,

∑

α∈Λ2

ZI
α(Q) = ZII

0 (Q) + ZII
1 (Q) +

∑

α≥ℵ0
ZII
α (Q) =

= ZII
0 (Q) + ZII

1 (Q) + EII
ℵ0 = ZII

0 (Q) + ZII
1 (Q) + EII = ZII,
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∑

α∈Λ3

ZIII
α (Q) = ZIII

0 (Q) +
∑

α≥ℵ0
ZIII
α (Q) = ZIII

0 (Q) + EIII
ℵ0 = ZIII

0 (Q) + EIII = ZIII.)

For the proof of (4.13) note that EI
1 ≤ EI and Eiℵ0 ≤ Ei as a straightforward

consequence of the definition of Eiα. For the reverse inequality it is sufficient to show
that Ei appears in the family defining Eiα with suitable i and α, i.e.2)

EIP � EIQ, ω � Eiℵ0P � Eiℵ0Q. (4.14)

Note that, as Ei are central, Ei ≤ CQ and CP = I, then

CEiQ = EiCQ = Ei = EiCP = CEiP

and thus EiP ≤ CEiP = CEiQ. For i = I we have that PEI is a steering projection in
some von Neumann algebra of type I, in particular it is quasi-abelian, so Lemma 3.4
ensures us that EIP � EIQ, giving the first part of (4.14).

For i = III we have that EIII is a steering projection in some von Neumann algebra
of type III and again, from Lemma 3.4 we get EIIIP � EIIIQ. But EIIIP is properly
infinite, hence EIIIP ∼ ω � EIIIP and thus ω � EIIIP � EIIIQ.

Finally, for i = II recall that EII ≤ ZII − ZII1 thus EIIP is a steering projection
in some von Neumann algebra of type II∞. Recall also that EIIQ is properly infinite.
This again allows us to conclude that EIIP � EIIQ, this time from Proposition 3.10
(and the definition of a steering projection in a type II∞ von Neumann algebra).
Moreover, EIIP ∼ ω � EIIP which gives the remaining part of (4.14).

Uniqueness. Suppose that we have two such systems {Ziα} and {W i
α} (with α

and i varying as before). Our task is to show

Ziα = W i
α. (4.15)

For the proof of (4.15) with α = 0 we will show that

Zi0 = (I − CQ)Zi. (4.16)

Once (4.16) is proved, it gives (4.15) with α = 0 since (4.16) gives an explicit formula
for Zi0 and the roles of Ziα and W i

α are symmetric.
We have that

Zi0Q ∼ 0� Zi0P = 0

and therefore Zi0Q = 0, hence3) Zi0 ≤ I − CQ. Since obviously Zi0 ≤ Zi, we have

Zi0 ≤ (I − CQ)Zi.

We will now show the reverse inequality.
For (i, α) 6= (II, 1) we have ZiαQ ∼ α� ZiαP and if W ≤ Ziα is central then

WQ = W (ZiαQ) ∼W (α� ZiαP ) = α�WP

2) Here α = 1 for i = I and α = ℵ0 for i = II, III.
3) From the definition of the central carrier, or from the fact that CZi

0Q
= Zi0CQ = 0.
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and this means that WQ = 0 implies WP = 0, and as CP = I, it also implies that
W = 0. In particular, for W := (I − CQ)Ziα (being central) we have WQ = 0, thus
W = 0 so Ziα = ZiαCQ and obviously Ziα ≤ Zi which together yields Ziα ≤ CQZi.

For (i, α) = (II, 1) the projection ZII
1 has the property that for every central

projection 0 6= W ≤ ZII
1 , WQ 6= 0. Thus for W := (I − CQ)ZII

1 we obtain as before
W = 0 and finally ZII

1 ≤ CQZII. Thus we have proved that Ziα ≤ CQZi for i = I, III, III
and α 6= 0. Summing up over all α 6= 0 yields:

∑

α>0

Ziα = Zi − Zi0 ≤ CQZi

which means that Zi(I − CQ) ≤ Zi0 and proves (4.16).
Now we will prove (4.15) for (i, α) = (II, 1). For α ≥ ℵ0 we have ZII

α ∼ α � ZII
αP

and the latter projection is properly infinite (or 0)4), so ZII
αQ is properly infinite or 0

and the same is true for
∑
α≥ℵ0 Z

II
αQ. But the sum appearing in this expression is

equal to ZII−ZII
0 −ZII

1 – this means that (ZII−ZII
0 −ZII

1 )Q is properly infinite or 0.
Since W II

1 Q is finite, then W II
1 (ZII −ZII

0 −ZII
1 )Q is also finite. But at the same time,

since W II
1 is central, we have that W II

1 (ZII − ZII
0 − ZII

1 )Q is properly infinite or 0.
Therefore this second possibility takes place:

W II
1 (ZII − ZII

0 − ZII
1 )Q = 0.

By taking the central carrier we get

W II
1 (ZII − ZII

0 − ZII
1 )CQ = 0

but from the above discussion we know that W II
1 ≤ CQZII ≤ CQ, hence we get:

W II
1 (ZII − ZII

0 − ZII
1 ) = 0

therefore
W II

1 Z
II

︸ ︷︷ ︸
=W II

1

−W II
1 (I − CQ)︸ ︷︷ ︸

=0

ZII −W II
1 Z

II
1 = 0.

This means that W II
1 = W II

1 Z
II
1 ≤ ZII

1 , and by repeating this argument (the roles of
ZII

1 and W II
1 are symmetric) we obtain W II

1 = ZII
1 .

Now we deal with the case α 6= 0 and (i, α) 6= (II, 1). We claim that

ZiαW
i
β = 0 whenever β ∈ Λi, β 6= α. (4.17)

For β = 0 or (i, β) = (II, 1) it has been already proved, as in these cases Ziβ = W i
β

and Ziα’s are all mutually orthogonal. For β > 0 (in the case i = I) and β ∈ Card∞
(in the case i 6= I) as ZiαQ ∼ α� ZiαP we have

W i
βZ

i
αQ ∼ α�W i

βZ
i
αP.

4) Later we will not always underline this fact, although it should be kept in mind.
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But at the same time, from W i
βQ ∼ β �W i

βP we get

W i
βZ

i
αQ ∼ β �W i

βZ
i
αP.

These together yield
α�W i

βZ
i
αP ∼ β �W i

βZ
i
αP.

Now W i
βZ

i
α 6= 0 implies W i

βZ
i
αP 6= 0 (recall that CP = I) and then W i

βZ
i
αP is a

steering projection in some von Neumann algebra of an appropriate type. By virtue
of Proposition 4.1 we obtain α = β, thus proving (4.17). From (4.17) we have

Ziα
∑

β∈Λi\{α}
W i
α = Ziα(Zi −W i

α) = Ziα − ZiαW i
α = 0

and thus Ziα ≤W i
α. Changing the role of Ziα and W i

α we get (4.15). The whole proof
is complete.

The above theorem may be seen as a variation of a result of Tomiyama (Theorem 1
in [11]). A careful reader may notice that our construction is essentially in the same
spirit as there.

Corollary 4.5. Let Q,Q′ ∈ A be two projections. Then the following conditions are
equivalent:

a) Q � Q′,
b) Ziα(Q)Ziβ(Q′) = 0 whenever α > β; and ZII

1 (Q)ZII
1 (Q′)Q � ZII

1 (Q)ZII
1 (Q′)Q′.

Proof. Step 1. First we show the following criterion for the Murray-von Neumann
equivalence: for two projections Q,Q′ ∈ A we have

Q ∼ Q′ ⇐⇒ Ziα(Q) = Ziα(Q′) (i ∈ {I, II, III}, α ∈ Λi) and ZII
1 (Q)Q ∼ ZII

1 (Q′)Q′.

For the proof assume first that Q ∼ Q′. Then Ziα(Q′)Q ∼ Ziα(Q′)Q′ ∼ α � Ziα(Q′)P
for (i, α) 6= (II, 1). For (i, α) = (II, 1) we have ZII

1 (Q′)Q ∼ ZII
1 (Q′)Q′; since the latter

projection is finite, so is ZII
1 (Q′)Q. Further, Q ∼ Q′ implies CQ = CQ′ and thus if

0 6= W ≤ ZII
1 (Q′)CQ is a central projection, then 0 6= W ≤ ZII

1 (Q′)CQ′ and thus
WQ 6= 0. Finally, observe that

(ZII − ZII1)ZII
1 (Q′)P ∼ ω � (ZII − ZII1)ZII

1 (Q′)Q′ ∼ ω � (ZII − ZII1)ZII
1 (Q′)Q.

So, we have proved that the system {Ziα}i,α(Q′) have all the desired properties (for
Q) – from its uniqueness we conclude that Ziα(Q) = Ziα(Q′) for all i ∈ {I, II, III} and
α ∈ Λi – then also ZII

1 (Q)Q ∼ ZII
1 (Q′)Q′.

For the proof of the converse implication, denote for simplicity Ziα := Ziα(Q) =
Ziα(Q′). We have then in particular ZII

1 Q ∼ ZII
1 Q
′ and for (i, α) 6= (II, 1):

ZiαQ ∼ α� ZiαP ∼ ZiαQ′.
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Since
∑
i∈{I,II,III}

∑
α∈Λi

Ziα = I, then

Q =
∑

i,α

ZiαQ ∼
∑

i,α

ZiαQ
′ = Q′.

Step 2. Now we shall check that (b) is implied by (a). The second part of our statement
is immediate. First let (i, α), (i, β) 6= (II, 1). Then, as Ziα(Q)Q ∼ α � Ziα(Q)P and
Ziβ(Q′)Q′ ∼ β � Ziβ(Q′)P and Q � Q′, we have:

α� Ziα(Q)Ziβ(Q′)P ∼ Ziα(Q)Ziβ(Q′)Q � Ziα(Q)Ziβ(Q′)Q′,

but, as Ziβ(Q′)Q′ ∼ β � Ziβ(Q′)P , we have

Ziα(Q)Ziβ(Q′)Q′ ∼ β � Ziα(Q)Ziβ(Q′)P.

Therefore we have (if we denote, to simplify, Z := Ziα(Q)Ziβ(Q′)) that α � ZP �
β � ZP. Now if we assume β < α, then the converse inequality is also true, namely
β � ZP � α � ZP , hence α � ZP ∼ β � ZP . Now suppose, on the contrary, that
Z 6= 0. Then ZP 6= 0 too and ZP is then a steering projection in some von Neumann
algebra, and then from Lemma 4.1 we conclude α = β which is a contradiction.

Further, we see that ZII
1 (Q)ZII

0 (Q′)Q � ZII
1 (Q)ZII

0 (Q′)Q′ = 0 and hence, by
point (c) of Theorem 4.4 for Q, ZII

1 (Q)ZII
0 (Q′) = 0. Finally, if α ∈ Card∞, then

ZII
α (Q)ZII

1 (Q′)Q � ZII
1 (Q′)Q′, which implies that ZII

α (Q)ZII
1 (Q′)Q is both properly

infinite (since ZII
α (Q)Q is such) and finite (since ZII

1 (Q′)Q′ is finite). We infer that
ZII
α (Q)ZII

1 (Q′)Q = 0 and consequently ZII
α (Q)ZII

1 (Q′) = 0, because ZII
α (Q) ≤ CQ.

This finishes the proof of (b).
Step 3. For the proof that (a) follows from (b), note that, since

∑

i

∑

α,β∈Λi

Ziα(Q)Ziβ(Q′) = I,

so it is enough to show that

Ziα(Q)Ziβ(Q′)Q � Ziα(Q)Ziβ(Q′)Q′, α, β ∈ Λi. (4.18)

Fix i ∈ {I, II, III} and α, β ∈ Λi and consider the cases:

(1◦) α > β; then from our assumptions Ziα(Q)Ziβ(Q′) = 0 and (4.18) is satisfied.
(2◦) (i, α) = (i, β) = (II, 1); then (4.18) is exactly the second part of our assumption.
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(3◦) α ≤ β and (i, β) = (II, 1), (i, α) 6= (II, 1). Then, in particular, i = II and the
only possibility is that α = 0. In this case Ziα(Q)Q ∼ 0 � Ziα(Q)P = 0, so
Ziα(Q)Ziβ(Q′)Q = 0 and (4.18) is satisfied.

(4◦) Both (i, α) and (i, β) are different from (II, 1) and α ≤ β. Then, as before, we
conclude from the relations Ziα(Q)Q ∼ α�Ziα(Q)P and Ziβ(Q′)Q′ ∼ β�Ziβ(Q′)P
that

Ziα(Q)Ziβ(Q′)Q ∼ α� Ziα(Q)Ziβ(Q′)P,

Ziα(Q)Ziβ(Q′)Q′ ∼ β � Ziα(Q)Ziβ(Q′)P.

Since α ≤ β then:

α� Ziα(Q)Ziβ(Q′)P � β � Ziα(Q)Ziβ(Q′)P

and (4.18) is satisfied.
(5◦) The remaining case is α ≤ β, (i, α) = (II, 1), (i, β) 6= (II, 1). In this case i = II

and hence β > α means that β ≥ ℵ0. As we have ZII
β (Q′)Q′ ∼ β � ZII

β (Q′)P
with infinite β, we conclude that ZII

β (Q′)Q′ is properly infinite (or 0). But ZII1

is central and finite, thus ZII1ZII
β (Q′)Q′ = 0. Taking the central carrier gives

ZII1ZII
β (Q′)CQ′ = 0. (4.19)

But recall5) that ZII
β (Q′) ≤ CQ′ . Thus (4.19) transforms into ZII1ZII

β (Q′) = 0.
We conclude that ZII

β (Q′) ≤ ZII − ZII1 and then (by point (c) of Theorem 4.4
for Q) ZII

β (Q′)ZII
1 (Q)P ∼ ω � ZII

β (Q′)ZII
1 (Q)Q. So:

ZII
β (Q′)ZII

1 (Q)Q � ZII
β (Q′)ZII

1 (Q)P � β � ZII
β (Q′)ZII

1 (Q)P ∼ ZII
β (Q′)ZII

1 (Q)Q′

and we are done.

Remark 4.6. Recently Sherman [9] proved (using Lemma 3.7 and a variation of
Theorem 4.4) that the Murray-von Neumann order in an arbitrary W ∗-algebra is
complete. That is, every set of projections has the g.l.b. as well as the l.u.b. with
respect to ‘�’.
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5) It follows from the proof of the previous theorem: ZII
β (Q′) ≤ EII ≤ (ZII − ZII1 )CQ′ ≤ CQ′ .
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