Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Small deviations between turbine blades exist due to manufacturing tolerances or material inhomogeneities. This effect is called mistuning and usually causes increased vibration amplitudes and also a lower service life expectancy of bladed disks or so called blisks (bladed integrated disk). The major resulting problem is to estimate the maximum amplitude with respect to these deviations. Due to the probability distribution of these deviations, statistical methods are used to predict the maximum amplitude. State of the art is the Monte-Carlo simulation which is based on a high number of randomly re-arranged input parameters. The aim of this paper is to introduce a useful method to calculate the probability distribution of the maximum amplitude of a mistuned blisk with respect to the random input parameters. First, the applied reduction method is presented to initiate the sensitivity analysis. This reduction method enables the calculation of the frequency response function (FRF) of a Finite Element Model (FEM) in a reasonable calculation time. Based on the Taylor series approximation, the sensitivity of the vibration amplitude depending on normally distributed input parameters is calculated and therewith, it is possible to estimate the maximum amplitude. Calculating only a single frequency response function shows a good agreement with the results of over 1000 Monte-Carlo simulations.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
353--368
Opis fizyczny
Bibliogr. 31 poz., rys.,tab.
Twórcy
autor
- Leibniz Universität Hannover, Institute of Dynamics and Vibration Research, Hannover, Germany
autor
- Leibniz Universität Hannover, Institute of Dynamics and Vibration Research, Hannover, Germany
autor
- Leibniz Universität Hannover, Institute of Dynamics and Vibration Research, Hannover, Germany
autor
- Leibniz Universität Hannover, Institute of Dynamics and Vibration Research, Hannover, Germany
Bibliografia
- 1. Beck J.A., Brown J.M., Cross C.J., Slater J.C., 2012, Probabilistic mistuning assessment using nominal and geometry based mistuning methods, Proceedings of ASME TURBO EXPO
- 2. Bhartiya Y., Sinha A., 2011, Reduced order model of a bladed rotor with geometric nistuning: comparison between modified modal domain analysis and frequency mistuning approach, Proceedings of ASME TURBO EXPO
- 3. Bladh R., Castanier M.P., Pierre C., 2001a, Component-mode-based reduced order modeling techniques for mistuned bladed disks – part 1: Theoretical models, Journal of Engineering for Gas Turbines and Power, 123, 89-98
- 4. Bladh R., Castanier M.P., Pierre C., 2001b, Component-mode-based reduced order modeling techniques for mistuned bladed disks – part 2: Application, Journal of Engineering for Gas Turbines and Power, 123, 100-108
- 5. Bladh R., Pierre C., Castanier M.P., Kruse M.J., 2001, Dynamic response predictions for a mistuned industrial turbomachinery rotor using reduced-order modeling, Journal of Engineering for Gas Turbines and Power, 123, 100-108
- 6. Castanier M.P., Pierre C., 2002, Using intentional mistuning in the design of turbomachinery rotors, AIAA Journal, 40, 10, 2077-2086
- 7. Castanier M.P., Pierre C., 2006, Modeling and analysis of mistuned bladed disk vibration: Status and emerging directions, Journal of Propulsion and Power, 22, 2, 384-396
- 8. Cermelj P., Pluymers B., Donders S., Desmet W., Boltezar M., 2008, Basis functions and their sensitivity in the wave-based substructuring approach, Proceedings of ISMA
- 9. Craig R.R., 2000, Coupling of substructures for dynaimc analyses: An overview, American Institute of Aeronautics and Astronautics, 1573, 3-14
- 10. Craig R.R., Bampton M.C.C., 1968, Coupling of substructures for dynamic analyses, American Institute of Aeronautics and Astronautics, 6, 1313-1317
- 11. Feiner D.M., Griffin J.H., 2002, A fundamental model of mistuning for a single family of modes, Journal of Turbomachinery, 124, 597-605
- 12. Feiner D.M., Griffin J.H., 2004a, Mistuning identification of bladed disks using a fundamental mistuning model – part I: Theory, Journal of Turbomachinery, 126, 150-158
- 13. Feiner D.M., Griffin J.H., 2004b, Mistuning identification of bladed disks using a fundamental mistuning model – part II: Application, Journal of Turbomachinery, 126, 159-165
- 14. Griffin J.H., Hoosac T., 1984, Model development and statistical investigation of turbine blade mistuning, Journal of Vibration, Acoustics, Stress, and Reliability, 106, 204-210
- 15. Han Y., Mignolet M.P., 2008, Optimization of intentional mistuning patterns for the mitigation of the effects of random mistuning, Proceedings of ASME TURBO EXPO
- 16. Hohl A., Kriegesmann B., Wallaschek J., Panning L., 2011, The influence of blade properties on the forced response of mistuned bladed disks, Proceedings of ASME TURBO EXPO
- 17. Mignolet M.P., Hu W., 1997, Direct prediction of the effects of mistuning on the forced response of bladed disks, International Gas Turbine and Aeroengine Congress and Exhibition
- 18. Mignolet M.P., Hu W., Jadic I., 2000, On the forced response of harmonically and partially mistuned bladed disks. part I: Harmonic mistuning, International Journal of Rotating Machinery, 6, 1, 29-41
- 19. Mignolet M.P., Rivas-Guerra A., LaBorde B., 1999, Towards a comprehensive direct prediction strategy of the effects of mistuning on the forced response of turbomachinery blades, Aircraft Engineering and Aerospace Technology, 71, 5, 462-469
- 20. Moyroud F., Fransson T., Jacquet-Richardet G., 2002, A comparison of two finite element reduction techniques for mistuned bladed disks, Journal of Engineering for Gas Turbines and Power, 124, 942-952
- 21. Petrov E.P., 2011, Reduction of forced response levels for bladed disks by mistuning: Overview of the phenomenon, Journal of Engineering for Gas Turbines and Power, 133, 072501-1-072501-10
- 22. Sextro W., Panning L., Goetting F., Popp K., 2002, Fast calculation of the statistics of the forced response of mistuning bladed disk assemblies with friction contracts, Proceedings of ASME TURBO EXPO
- 23. Shuai W., Jianyao Y., 2010, Mistuning identification for integrally bladed disks based on the SNM technique, Proceedings of ASME TURBO EXPO
- 24. Siewert C., Stuer H. , 2010, Forced response analysis of mistuned turbine bladings, Proceedings of ASME TURBO EXPO
- 25. Sinha A., 1986, Calculating the statistics of forced response of a mistuned bladed disk assembly, AIAA Journal, 24, 11
- 26. Sinha A., 2009, Reduced-order model of a bladed rotor with geometric mistuning, Journal of Turbomachinery, 131, 031007-1-031007-7
- 27. Sinha A., Chen S., 1989, A higher order technique to compute the statistics of forced response of a mistuned bladed disk assembly, Journal of Sound and Vibration, 130, 2, 207-221
- 28. Tatzko S., von Scheidt L.P., Wallaschek J., Kayser A., Walz G., 2013, Investigation of alternate mistuned turbine blades non-linear coupled by underplatform gampers, Proceedings of ASME TURBO EXPO
- 29. Thomas D.L., 1979, Dynamics of rotationally periodic structures, International Journal for Numerical Methods in Engineering, 14, 81-102
- 30. Whitehead D.S., 1966, Effect of mistuning on the vibration of turbomachine blades induced by wakes, Journal Mechanical Engineering Science, 8, 1, 15-21
- 31. Yang M.-T., Griffin J.H., 2001, A reduced-order model of mistuning using a subset of nominal system modes, Journal of Engineering for Gas Turbines and Power, 123, 893-900
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-47a07a96-6c6f-4613-a082-7c13d27ae67f