PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Role of substrate temperature on the growth mechanism and physical properties of spray deposited lead oxide thin films

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Thin films of lead oxide were synthesized by cost effective spray pyrolysis technique at different substrate temperatures on glass substrates. Effect of substrate temperature on the growth mechanism and physical properties of the films was investigated. All the films were polycrystalline in nature with tetragonal structure corresponding to a-PbO. The films coated at 225 °C and 275 °C were (1 0 1) oriented, while the films deposited at 325 °C and 375 °C were (0 0 2) oriented. Above 375 °C, the pure tetragonal nature deteriorated and the peaks corresponding to orthorhombic phase were observed. The band gap value was found to be in the range of 2.3 to 2.62 eV. All the films had a resistivity of the order of 103 ohm-cm. A minimum resistivity of 0.0191 × 103 ohm-cm was obtained for the film coated at 325 °C. The activation energy increased with increase in substrate temperature.
Wydawca
Rocznik
Strony
448--456
Opis fizyczny
Bibliogr. 35 poz., rys., tab., wykr.
Twórcy
autor
  • PG and Research Department of Physics, AVVM Sri Pushpam College, Poondi – 613 503, Thanjavur District, Tamilnadu, India
autor
  • PG and Research Department of Physics, AVVM Sri Pushpam College, Poondi – 613 503, Thanjavur District, Tamilnadu, India
autor
  • PG and Research Department of Physics, AVVM Sri Pushpam College, Poondi – 613 503, Thanjavur District, Tamilnadu, India
Bibliografia
  • [1] KOTZ R., STUCKY S., CARCER B., J. Appl. Electrochem., 21 (1991), 14.
  • [2] LIPP L., PLETCHER D., Electrochim. Acta, 42 (1997),1091.
  • [3] COMNINELLIS C., PULGARIN C., J. Appl. Electrochem.,23 (1993), 108.
  • [4] VELUCHAMY P., SHARON M., SHIMIZU M., MINOURA H., J. Electroanal. Chem., 365 (1994), 179.
  • [5] GHASEMI S., MOUSAVI M.F., SHAMSIPUR M.,KARAMI H., Ultrason. Sonochem., 15 (2008), 448.
  • [6] ZHANG L., GUO F., LIU X., CUI J., QIAN Y.T., J.Cryst. Growth., 280 (2005), 575.
  • [7] CHAO S., FUANG Y.F., CHEN Y.C., YAN L., J. Phys.D Appl. Phys., 23 (1990), 955.
  • [8] MADSEN L.D., WEAVER L., J. Am. Ceram. Soc., 81(1998), 988.
  • [9] BERSANI M., MORTEN B., PRUDENZIATI M., J.Mater. Res., 12 (1997), 501.
  • [10] TRINQUIER G., HOFFMANN R., J. Phys. Chem., 88(1984), 6696. H.W., Physica C, 338 (2000), 189.
  • [11] SAMOILENKOV S.V., ADAMOV G.E., GORBENKO O.Y., GRABOY I.E., KAUL A.R., ZANDBERGEN H.W., Physica C, 338 (2000), 189.
  • [12] NEUMAYER D.A., SCHULZ D.L., RICHESON D.S.,MARKS T.J., DEGROUT D.C., SCHINDLER J.L.,KANNEWURF C.R., Thin Solid Films, 216 (1992), 41.
  • [13] THANGARAJU B., KALIANNAN P., Semicond. Sci.Tech., 15 (2000), 542.
  • [14] MARTOS M., MORALES J., SANCHEZ L., AYOUCHI R., LEINEN D., MARTIN F., RAMOS BARRADO J.R.,Electrochim. Acta, 46 (2001), 2939.
  • [15] GREENWOOD N.N., EARNSHAW A., Chemistry of theElements, 2nd ed., Butterworth Heinemann, Oxford,2001.
  • [16] KIM J.H., KIM Y., CHIEN A.T., LANGE F.F., J. Mater. Res., 16 (2001), 1739.
  • [17] BALEVA M., TUNCHEVA V., J. Mater. Sci. Lett., 13 (1994), 3.
  • [18] VENKATARAJ S., GEURTS J., WEIS H., JAYAVEL R.,WUTTIG M., J. Vac. Sci. Technol. A, 19 (2001), 2870.
  • [19] ZHITOMIRSKY I., GAL-OR L., KOHN A., HENNICKE H.W., J. Mater. Sci. Lett., 14 (1995), 807.
  • [20] PATIL P.S., Mater. Chem. Phys., 59 (1999), 185.
  • [21] AYOUCHI A., MARTIN M., LEINEN D., RAMOSBARRADO J.R., J. Cryst. Growth, 247 (2003), 497.
  • [22] KAMAL H., ELMAGHRABY E.K., ALY S.A., ABDELHADY K., J. Cryst. Growth, 262 (14) (2004), 424.
  • [23] CHITRA AGASHE, TAKWALE M.G., MARATHE B.R., BHIDE V.G., Sol. Energ. Mat. Sol. C., 17 (1988), 99.
  • [24] DEOKATE R.J., PAWAR S.M., MOHOLKAR A.V.,SAWANT V.S., PAWAR C.A., BHOSALE C.H., RAJPURE K.Y., Appl. Surf. Sci., 254 (2008), 2187.
  • [25] CRUZ M., HERNAN L., MORALES J., SANCHEZ L., J.Power Sources, 108 (2002), 35.
  • [26] MA YING-REN, J. Appl. Phys., 76 (1994), 2860.
  • [27] MAHMOUD S.A., ALSHOMER S., TARAWNH M.A., J. Mod. Phys., 2 (2011), 1178.
  • [28] RADHAKRISHNAN S., KAMALASANAM M.N., MAHENDRU P.C., J. Mater. Sci., 18 (1983), 1912.
  • [29] ARAI T., J. Phys. Soc. Jpn., 15 (1960), 916.
  • [30] VENKATARA S., GEURTS J., WEIS H., KAPPERTZ O., NJOROGE W.K., JAYAVEL R., J. Vac. Sci. Technol. A, 19 (2001), 2870.
  • [31] OHHYEON HWANG, SANGSU KIM, JONG HEESUH, SHINTTANG CHO, KITTYUN KIM, JINKI HONG, SUNUNG KIM, Nucl. Instrum. Meth. A, 633 (2011), 569.
  • [32] SALUNKHE R.R., DHAWALE D.S., GUJAR T.P., LOKHANDE C.D., Mater. Res. Bull., 44 (2009), 364.
  • [33] RATHEESH KUMAR P.M., SUDHAKARTHA C., VIJAYAKUMAR K.P., SINGH F., AVASTHI D.K., ABI T., KASHIWABE Y., OKRAM G.S., KUMAR M.,SARVEESH KUMAR., J. Appl. Phys., 97 (2005), 013509.
  • [34] SINGH R., ARORA S.K., SINGH J.P., RENU TYAGI, AGARWAL S.K., KANJILAL D., Mater. Sci. Eng. BAdv.,86 (2001), 228.
  • [35] KHADEER PASHA S.K., CHIDAMBARAM K., VIJAYAN N., MADHURI W., Optoelectron. Adv. Mat., 6 (1 – 2) (2012), 110.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-479aa84f-b1d4-45db-9c1f-7a984e5d0ffd
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.