PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Computer-simulated degradation of CF3Cl, CF2Cl2, and CFCl3 under electron beam irradiation

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Electron beam treatment technologies should be versatile in the removal of chlorofl uorocarbons (CFCs) owing to their exceptional cross sections for the thermal electrons generated in the radiolysis of air. Humidity, dose rates, O2 concentration, and CFC concentration infl uence the effi ciency of the destruction process under electron beam treatment. Computer simulations have been used to theoretically demonstrate the destruction of chlorotrifl uoromethane (CF3Cl), dichlorodifl uoromethane (CF2Cl2), and trichlorofl uoromethane (CFCl3) in the air (N2 + O2: 80% + 20%) in room temperature up to a dose of 13 kGy. Under these conditions, it is predicted that the removal effi ciency is in the order CF3Cl (0.1%) < CF2Cl2 (7%) < CFCl3 (34%), which shows the dependence of the process on the number of substituted Cl atoms. Dissociative electron attachment with the release of Cl– is the primary process initiating the destruction of CFCs from the air stream. Reactions with the first excited state of oxygen, namely, O(1 D), and charge-transfer reactions further promote the degradation process. The degradation products can be further degraded to CO2, Cl2, and F2 by prolonged radiation treatment. Other predicted products can also be removed through chemical processes.
Czasopismo
Rocznik
Strony
67--76
Opis fizyczny
Bibliogr. 61 poz., rys.
Twórcy
  • Institute of Nuclear Chemistry and Technology Dorodna 16 St., 03-195 Warsaw, Poland
autor
  • Institute of Nuclear Chemistry and Technology Dorodna 16 St., 03-195 Warsaw, Poland
  • Institute of Nuclear Chemistry and Technology Dorodna 16 St., 03-195 Warsaw, Poland
  • Institute of Radiation Physical and Chemical Problems Academy of Sciences Republic of Belarus Minsk-Sosny, Belarus
Bibliografia
  • 1. Xiao, G., Xu, W., Wu, R., Ni, M., Du, C., Gao, X., Luo, Z., & Cen, K. (2014). Non-thermal plasmas for VOCs abatement. Plasma Chem. Plasma Process., 34(5), 1033–1065. https://doi.org/10.1007/s11090-014-9562-0.
  • 2. Chmielewski, A. G. (1995). Electron beam gaseous pollutants treatment. In International Conference on Plasma Science, 5–8 June 1995, Madison, WI, USA (p. 269). DOI: 10.1109/PLASMA.1995.533498.
  • 3. Denifl, G., Muigg, D., Walker, I., Cicman, P. T., Matejcik, S., Skalny, J. D., Stamatovic, A., & Märk, T. D. (1999). Dissociative electron attachment to CF2Cl2. Czech. J. Phys., 49(3), 383–392. https://doi.org/10.1023/A:1022857202672.
  • 4. Wang, Y. F., Lee, W. J., Chen, C. Y., Wu, Y. P. G., & Chang-Chien, G. P. (2000). Reaction mechanisms in both a CCl2F2/O2/Ar and a CCl2F2/H2/Ar RF plasma environment. Plasma Chem. Plasma Process., 20(4),469–494. https://doi.org/10.1023/A:1007027805680.
  • 5. Stoiber, T., Evans, S., & Naidenko, O. V. (2020). Disposal of products and materials containing perand polyfluoroalkyl substances (PFAS): A cyclical problem. Chemosphere, 260, 127659. https://doi.org/10.1016/j.chemosphere.2020.127659.
  • 6. Ross, I., McDonough, J., Miles, J., Storch, P., Thelakkat Kochunarayanan, P., Kalve, E., Hurst, J., Dasgupta, S., & Burdick, J. (2018). A review of emerging technologies for remediation of PFASs. Remediation, 28(2), 101–126. https://doi.org/10.1002/rem.21553.
  • 7. Dahiru, U. H., Saleem, F., Zhang, K., & Harvey, A. P. (2021). Removal of cyclohexane as a toxic pollutant from air using a non-thermal plasma: Influence of different parameters. J. Environ. Chem. Eng., 9(1), 105023. https://doi.org/10.1016/j.jece.2021.105023.
  • 8. Hakoda, T., Hashimoto, S., & Kojima, T. (2002). Effect of water and oxygen contents on the decomposition of gaseous trichloroethylene in air under electron beam irradiation. Bull. Chem. Soc. Jpn., 75(10). https://doi.org/10.1246/bcsj.75.2177.
  • 9. Hirota, K., Hakoda, T., Arai, H., & Hashimoto, S. (2002). Electron-beam decomposition of vaporized VOCs in air. Radiat. Phys. Chem., 65(4/5), 415–421.https://doi.org/10.1016/S0969-806X(02)00353-5.
  • 10. Kim, H. H., Prieto, G., Takashima, K., Katsura, S., & Mizuno, A. (2002). Performance evaluation of discharge plasma process for gaseous pollutant removal. J. Electrost., 55(1), 25–41. https://doi.org/10.1016/ S0304-3886(01)00182-6.
  • 11. Dobslaw, C., & Glocker, B. (2020). Plasma technology and its relevance in waste air and waste gas treatment. Sustainability, 12(21), 1–39. https://doi.org/10.3390/su12218981.
  • 12. Cooper, R., & Mezyk, S. P. (2001). Fundamental processes in gas phase radiation chemistry. Studies in Physical and Theoretical Chemistry C, 87, 107–144. https://doi.org/10.1016/S0167-6881(01)80008-2.
  • 13. Chmielewski, A. G., Sun, Y., Licki, J., Pawelec, A., Witman, S., & Zimek, Z. (2012). Electron beam treatment of high NOx concentration off-gases. Radiat. Phys. Chem., 81(8), 1036–1039. https://doi.org/10.1016/j.radphyschem.2011.12.012.
  • 14. Kashiwagi, M., & Hoshi, Y. (2012). Electron beam processing system and its application. SEI Tech. Rev., 75, 47–54.
  • 15. Gogulancea, V., & Lavric, V. (2014). Flue gas cleaning by high energy electron beam – modeling and sensitivity analysis. Appl. Therm. Eng., 70(2), 1253–1261. https://doi.org/10.1016/j.applthermaleng.2014.05.046.
  • 16. Illenberger, E. (1992). Electron-attachment reactions in molecular clusters. Chem. Rev., 92(7), 1589–1609.https://doi.org/10.1021/cr00015a006.
  • 17. Jones, R. K. (1984). Absolute total cross section for the scattering of low energy electrons by methane. J. Chem. Phys., 82(12), 5424–5427. https://doi. org/10.1063/1.448575.
  • 18. Won, Y. S., Han, D. H., Stuchinskaya, T., Park, W. S., & Lee, H. S. (2002). Electron beam treatment of chloroethylenes/air mixture in a flow reactor. Radiat. Phys. Chem., 63(2), 165–175. https://doi.org/10.1016/S0969-806X(01)00237-7.
  • 19. Kim, J., Han, B., Kim, Y., Lee, J. H., Park, C. R., Kim, J. C., Kim, J. C., & Kim, K. J. (2004). Removal of VOCs by hybrid electron beam reactor with catalyst bed. Radiat. Phys. Chem., 71(1/2), 429–432. https://doi.org/10.1016/J.RADPHYSCHEM.2004.04.015.
  • 20. Han, D. H., Stuchinskaya, T., Won, Y. S., Park, W. S., & Lim, J. K. (2003). Oxidative decomposition of aromatic hydrocarbons by electron beam irradiation. Radiat. Phys. Chem., 67(1), 51–60. https://doi.org/10.1016/S0969-806X(02)00405-X.
  • 21. Nichipor, H., Yacko, S., Sun, Y., Chmielewski, A. G., & Zimek, Z. (2008). Theoretical study of dose and dose rate effect on trichloroethylene (HClC=CCl2)decomposition in dry and humid air under electron beam irradiation. Nukleonika, 53(1), 11–16.
  • 22. Fabian, P., & Borchers, R. (2001). Growth of halocarbon abundances in the stratosphere between 1977 and 1999. Adv. Space Res., 28(7), 961–964. https://doi.org/10.1016/S0273-1177(01)80024-7.
  • 23. Midgley, P. M., & McCulloch, A. (1999). Production, sales and emissions of halocarbons from industrial sources. In P. Fabian & O. N. Singh (Eds.). Reactive halogen compounds in the atmosphere. (The Handbook of Environmental Chemistry, Vol. 4E, pp. 155–190). Berlin, Heidelberg: Springer. https://doi.org/10.1007/10628761_6.
  • 24. Főglein, K. A., Szépvölgyi, J., Szabó, P. T., Mészáros, E., Pekker-Jakab, E., Babievskaya, I. Z., Mohai, I., & Károly, Z. (2005). Comparative study on decomposition of CFCl3 in thermal and cold plasma. Plasma Chem. Plasma Process., 25(3), 275–288. https://doi.org/10.1007/s11090-004-3040-z.
  • 25. Yokoi, A., Kuchar, D., Kubota, M., Liwei, H., Ushiroebisu, K., & Matsuda, H. (2008). Comparison of non-thermal plasma decomposition characteristics of organo-halide gases under oxidizing and reducing atmosphere. Global NEST Journal, 10(2), 249–254.
  • 26. Codnia, J., & Azcárate, M. L. (2006). Rate measurement of the reaction of CF2Cl radicals with O2. Photochem. Photobiol., 82(3), 755. https://doi.org/10.1562/2006-01-04-ra-764.
  • 27. Xavier, E. S., Rocha, W. R., Da Silva, J. C. S., Dos Santos, H. F., & De Almeida, W. B. (2007). Ab initio thermodynamic study of the reaction of CF2Cl2 and CHF2Cl CFCs species with OH radical. Chem. Phys. Lett., 448(4/6), 164–172. https://doi.org/10.1016/j.cplett.2007.09.086.
  • 28. Faradzhev, N. S., Perry, C. C., Kusmierek, D. O., Fairbrother, D. H., & Madey, T. E. (2004). Kinetics of electron-induced decomposition of CF2Cl2 coadsorbed with water (ice): A comparison with CCl4. J. Chem. Phys., 121(17), 8547–8561. https://doi.org/10.1063/1.1796551.
  • 29. Lengyel, J., van der Linde, C., Fárník, M., & Beyer, M. K. (2016). The reaction of CF2Cl2 with gas-phase hy-Computer-simulated degradation of CF3Cl, CF2Cl2, and CFCl3 under electron beam irradiation 75 drated electrons. Phys. Chem. Chem. Phys., 18(34), 23910–23915. https://doi.org/10.1039/c6cp01976e.
  • 30. Nakayama, N., Wilson, S. C., Stadelmann, L. E., Lee, H. L. D., Cable, C. A., & Arumainayagam, C. R. (2004). Low-energy electron-induced chemistry of CF2Cl2: Implications for the ozone hole? J.Phys. Chem. B, 108(23), 7950–7954. https://doi.org/10.1021/jp031319j.
  • 31. Anshumali, Winkleman, B. C., & Sheth, A. (1997). Destruction of low levels of volatile organic compounds in dry air streams by an electron-beam generated plasma. J. Air Waste Manage. Assoc., 47(12),1276–1283. https://doi.org/10.1080/10473289.1997.10464071.
  • 32. Yamamoto, T., & Futamura, S. (1998). Nonthermal plasma processing for controlling volatile organic compounds. Combust. Sci. Technol., 133(1/3), 117–133.https://doi.org/10.1080/00102209808952031.
  • 33. Nichipor, H., Dashouk, E., Chmielewski, A. G., Zimek, Z., & Bułka, S. (2000). A theoretical study on decomposition of carbon tetrachloride, trichloroethylene and ethyl chloride in dry air under the influence of an electron beam. Radiat. Phys. Chem.,5(3/6), 519–525. https://doi.org/10.1016/S0969-806X(99)00454-5.
  • 34. Burns, S. J., Matthews, J. M., & McFadden, D. L. (1996). Rate coefficients for dissociative electron attachment by halomethane compounds between 300 and 800 K. J. Phys. Chem., 100(50), 19436–19440.https://doi.org/10.1021/jp962529h.
  • 35. Illenberger, E., Scheunemann, H. U., & Baumgärtel, H. (1979). Negative ion formation in CF2Cl2, CF3Cl and CFCl3 following low energy (0–10 eV) impact with near monoenergetic electrons. Chem. Phys., 37(1), 21–31. https://doi.org/10.1016/0301-0104(79)80003-8.
  • 36. Klar, D., Ruf, M. W., & Hotop, H. (2001). Dissociative electron attachment to CCl4 molecules at low electron energies with meV resolution. Int. J. Mass Spectrom., 205(1/3), 93–110. https://doi.org/10.1016/S1387-3806(00)00271-2.
  • 37. Durbin, D. E., Wentworth, W. E., & Zlatkis, A. (1970). Reactions between electron absorbing organic compounds and electrons at near thermal energies. J. Am. Chem. Soc., 92(17), 5131–5136. https://doi.org/10.1021/ja00720a023.
  • 38. Gal, A., Ogata, A., Futamura, S., & Mizuno, K. (2003). Mechanism of the dissociation of chlorofluorocarbons during nonthermal plasma processing in nitrogen at atmospheric pressure. J. Phys. Chem. A, 107(42), 8859–8866. https://doi.org/10.1021/jp0347769.
  • 39. Miller, T. M. (2005). Thermal electron attachment and detachment in gases. Advances in Atomic, Molecular and Optical Physics, 51(5), 299–342. https://doi.org/10.1016/S1049-250X(05)51018-8.
  • 40. Atkinson, R., Hansen, D. A., & Pitts, J. N. (1975). Rate constants for the reaction of OH radicals with CHF2Cl, CF2Cl2, CFCl3, and H2 over the temperaturę range 297-434 K. J. Chem. Phys., 63(5), 1703. https://doi.org/10.1063/1.431566.
  • 41. DeMore, W. B., & Bayes, K. D. (1999). Rate constants for the reactions of hydroxyl radical with several alkanes, cycloalkanes, and dimethyl ether. J. Phys. Chem. A, 103(15), 2649–2654. https://doi.org/10.1021/jp983273d.
  • 42. Graupner, K., Haughey, S. A., Field, T. A., Mayhew, C. A., Hoffmann, T. H., May, O., Fedor, J., Allan, M., Fabrikant, I. I., Illenberger, E., Braun, M., Ruf, M. W., & Hotop, H. (2010). Low-energy electron attachment to the dichlorodifl uoromethane (CCl2F2) molecule. J. Phys. Chem. A, 114(3), 1474–1484. https://doi.org/10.1021/jp9081992.
  • 43. Willis, C., Boyd, A. W., Young, M. J., & Armstrong, D. A. (1970). Radiation chemistry of gaseous oxygen: experimental and calculated yields. Can. J. Chem., 48(10), 246. https://doi.org/10.1139/v70-246.
  • 44. Atkinson, R., Connell, P. S., Dorn, H. P., Derudder, A., & Isaksen, I. S. (1990). Halocarbon ozone depletion and global warming potentials N92-15434. In R. A. Cox & D. Wuebbles (Eds.), Scientifi c assessment of stratospheric ozone (Vol. 4, pp. 4.1-4.192). Scientific Assessment of Stratospheric Ozone.
  • 45. Harrison, J. J., Chipperfi eld, M. P., Dudhia, A., Cai, S., Dhomse, S., Boone, C. D., & Bernath, P. F. (2014). Satellite observations of stratospheric carbonyl fluoride. Atmos. Chem. Phys., 14(21), 11915–11933. https://doi.org/10.5194/acp-14-11915-2014.
  • 46. Hayman, G. D., Solomon, S., Howard, C., Kanakidou, M., & Penkett, S. A. (1994). Atmospheric degradation of halocarbon substitutes. Scientific Assessment of Ozone Depletion, 37, 12.1-12.17.
  • 47. Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F., Hynes, R. G., Jenkin, M. E., Rossi, M. J., Troe, J., & Wallington, T. J. (2008). Evaluated kinetic and photochemical data for atmospheric chemistry: Volume IV – Gas phase reactions of organic\newline halogen species. Atmos. Chem. Phys., 8(15), 4141–4496. https://doi.org/10.5194/acp-8-4141-2008.
  • 48. Burkholder, J. B., Cox, R. A., & Ravishankara, A. R. (2015). Atmospheric degradation of ozone depleting substances, their substitutes, and related species. Chem. Rev., 115(10), 3704–3759. https://doi. org/10.1021/cr5006 759.
  • 49. Cox, R. A., Ammann, M., Crowley, J. N., Herrmann, H., Jenkin, M. E., McNeill, F. V., Wahid Mellouki, A., Rossi, M. J., Troe, J., & Wallington, T. J. (2019,April 22). IUPAC in the (real) clouds. International Union of Pure and Applied Chemistry. https://iupac.org/100/stories/iupac-in-the-clouds/.
  • 50. Jeon, E. C., Kim, K. J., Kim, J. C., Kim, K. H., Chung, S. G., Sunwoo, Y., & Park, Y. K. (2008). Novel hybrid technology for VOC control using an electron beam and catalyst. Res. Chem. Intermediat., 34(8/9),863–870. https://doi.org/10.1007/BF03036948.
  • 51. Son, Y. S., Kim, K. J., & Kim, J. C. (2010). A review on VOCs control technology using electron beam. Asian J. Atmos. Environ., 4(2), 63–71. https://doi.org/10.5572/ajae.2010.4.2.063.
  • 52. Sun, Y., Chmielewski, A. G., Licki, J., Bułka, S., & Zimek, Z. (2009). Decomposition of organic compounds in simulated industrial off-gas by using electron beam irradiation. Radiat. Phys. Chem., 78(7/8), 721–723. https://doi.org/10.1016/j.radphyschem.2009.03.049.
  • 53. Han, D. -H. H., Stuchinskaya, T., Won, Y. -S. S., Park, W. -S. S., & Lim, J. -K. K. (2003). Oxidative 76 S. Kabasa et al. decomposition of aromatic hydrocarbons by electron beam irradiation. Radiat. Phys. Chem., 67(1), 51–60. https://doi.org/10.1016/s0969-806x(02)00405-x.
  • 54. Hirota, K., Sakai, H., Washio, M., & Kojima, T. (2004). Application of electron beams for the treatment of VOC streams. Ind. Eng. Chem. Res., 43(5), 1185–1191. https://doi.org/10.1021/ie0340746.
  • 55. Sun, Y. X., Hakoda, T., Chmielewski, A. G., & Hashimoto, S. (2003). Trans-1,2-dichloroethylene decomposition in low-humidity air under electron beam irradiation. Radiat. Phys. Chem., 68(5), 843–850. https://doi.org/10.1016/S0969-806X(03)00347-5.
  • 56. Sun, Y. X., Hakoda, T., Chmielewski, A. G., Hashimoto, S., Zimek, Z., Bulka, S., Ostapczuk, A., & Nichipor, H. (2001). Mechanism of 1,1-dichloroethylene decomposition in humid air under electron beam irradiation. Radiat. Phys. Chem., 62(4), 353–360.https://doi.org/10.1016/S0969-806X(01)00200-6.
  • 57. Penetrante, B. M., Hsiao, M. C., Bardsley, J. N., Merritt, B. T., Vogtlin, G. E., Kuthi, A., Burkhart, C. P., & Bayless, J. R. (1997). Identification of mechanisms for decomposition of air pollutants by non-thermal plasma processing. Plasma Sources Sci. Technol., 6(3), 251. https://doi.org/10.1088/0963-0252/6/3/002.
  • 58. Aleksandrov, N. L., & Bazelyan, E. M. (1999). Ionization processes in spark discharge plasmas. Plasma Sources Sci. Technol., 8(2), 285. https://doi.org/10.1088/0963-0252/8/2/309.
  • 59. Lietz, A. M., & Kushner, M. J. (2018). Molecular admixtures and impurities in atmospheric pressure plasma jets. J. Appl. Phys., 124(15), 153303. https://doi.org/10.1063/1.5049430.
  • 60. Chmielewski, A. G., Sun, Y., Bułka, S., & Zimek, Z.(2007). Review on gaseous chlorinated organic pollutants electron beam treatment. Radiat. Phys. Chem., 76(11/12), 1795–1801. https://doi.org/10.1016/j.radphyschem.2007.02.102.
  • 61. Sun, Y., Chmielewski, A. G., Bułka, S., & Zimek, Z. (2007). 1-Chloronaphthalene decomposition in different gas mixtures under electron beam irradiation.Radiat. Phys. Chem., 76(11/12), 1802–1805. https://doi.org/10.1016/j.radphyschem.2007.02.111.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4799f1e5-d5a7-4f9c-a4a7-461c47a536d7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.