Powiadomienia systemowe
- Sesja wygasła!
- Sesja wygasła!
Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This study examined the impact of biochar concentration variability and soaking duration in LOF on the chemical properties of Spodosols and ultisols. The biochar was applied at percentages of 0, 2, 5, 10, 20, 25, and 100%, with soaking times of 0, 1, 12, and 24 hours. The results indicated significant improvements in the soil pH, organic carbon, total nitrogen, phosphorus, potassium, and cation exchange capacity in both soil types. Applying biochar at the 100% application rate resulted in the most significant improvement in the soil chemical properties, but the application rate of 10–25% was optimal for agricultural soils, indicating economic feasibility and increased sustainability. The optimal dosage and soaking time varied for Spodosols; a 12-hour soaking period was best for pH improvement, whereas 24 hours maximized organic carbon and total nitrogen. In the ultisols, no soaking was necessary for the optimal pH, whereas 1 hour was ideal for organic carbon and total nitrogen. Available phosphorus and potassium were maximized at 24 hours for both soils. In the case of CEC, it was best improved, with 12 hours for Spodosols and 24 hours for ultisols. Thus, the results of this work demonstrated the effectiveness of individually selected biochar treatments for improving the soil pH, structure, and fertility, which is crucial for the sustainable use of soil in agriculture. Further studies should help confirm these results in long-term field tests and evaluate their economic feasibility for extensive applications.
Słowa kluczowe
Wydawca
Rocznik
Tom
Strony
95--110
Opis fizyczny
BIbliogr. 49 poz., rys., tab.
Twórcy
autor
- Silviculture Laboratory, Faculty of Forestry, Mulawarman University, Jl. Penajam Kampus Gunung Kelua, Samarinda, East Kalimantan, Indonesia
autor
- Silviculture Laboratory, Faculty of Forestry, Mulawarman University, Jl. Penajam Kampus Gunung Kelua, Samarinda, East Kalimantan, Indonesia
autor
- Silviculture Laboratory, Faculty of Forestry, Mulawarman University, Jl. Penajam Kampus Gunung Kelua, Samarinda, East Kalimantan, Indonesia
autor
- Soil, Water Conservation and Climate Laboratory, Faculty of Forestry, Mulawarman University, Jl. Penajam Kampus Gunung Kelua, Samarinda, East Kalimantan, Indonesia
Bibliografia
- 1. Abbasi, M. and Anwar, A. (2015). Ameliorating effects of biochar derived from poultry manure and white clover residues on soil nutrient status and plant growth promotion - greenhouse experiments. Plos One 10(6), e0131592, https://doi.org/10.1371/ journal.pone. 0131592
- 2. April, R., Newton, R., Coles, L.T. (2004). Chemical properties of forest soils. In: Encyclopedia of Forest Sciences. Elsevier Inc, 329–343.
- 3. Arthagama, I., Dana, I. and Wiguna, P. (2021). Effect of various types of growing media and application of liquid organic fertilizer on the growth of dendrobium orchids. International Journal of Biosciences and Biotechnology 8(2): 54, https://doi.org/10.24843/ijbb.2021.v08.i02.p07
- 4. Asri, F. (2022). Effects of biochar and fertilizer application on soil properties and nutrient status of lettuce. Chilean Journal of Agricultural Research 82(3), 469–483, https://doi.org/10.4067/s0718-58392022000300469.
- 5. Bao, Z. (2024). Long‐term biochar application promoted soil aggregate‐associated potassium availability and maize potassium uptake. GCB Bioenergy 16(4), https://doi.org/10.1111/gcbb.13134.
- 6. Baquy, A., Li, J., Xu, C., Mehmood, K., and Xu, R. (2016). Determination of critical ph and al concentration of acidic ultisols for wheat and canola crops. Solid Earth Discuss, https://doi.org/10.5194/ se-2016-126
- 7. Bishwakarma, S., Khanal, B., Shriwastav, C., Dhakal, R., and Karkee, S. (2022). Impact of biochar and plastic mulch on soil properties in a maize field in nepal. Archives of Agriculture and Environmental Science 7(2): 241-245, https://doi.org/10.26 832/24566632.2022.0702012
- 8. Blanco‐Canqui, H. (2020). Does biochar improve all soil ecosystem services? GCB Bioenergy 13(2): 291–304, https://doi.org/10.1111/gcbb.12783
- 9. Bolan, N., Hoang, S., Beiyuan, J., Gupta, S., Hou, D., Karakoti, A., … and Zwieten, L. (2021). Multifunctional applications of biochar beyond carbon storage. International Materials Reviews 67(2): 150–200, https://doi.org/10.1080/09506608.2021.1922047
- 10. Butnan, S., Deenik, J., Toomsan, B., Antal, M., and Vityakon, P. (2016). Biochar properties influencing greenhouse gas emissions in tropical soils differing in texture and mineralogy. Journal of Environmental Quality 45(5): 1509–1519, https://doi.org/10.2134/ jeq2015.10.0532
- 11. Caceres, L., Fuentes, R., Escudey, M., Fuentes, E., and Báez, M. (2010). Metsulfuron-methyl sorption/ desorption behavior on volcanic ash-derived soils. effect of phosphate and ph. Journal of Agricultural and Food Chemistry 58(11): 6864–6869. https://doi.org/10.1021/jf904191z
- 12. de Mendiburu, F. (2020). Agricolae: Statistical Procedures for Agricultural Research. R package version 1.3-3. https://CRAN.R-project.org/ package=agricolae
- 13. Domingues, R., Sánchez-Monedero, M., Spokas, K., Melo, L., Trugilho, P., Valenciano, M., … and Silva, C. (2020). Enhancing cation exchange capacity of weathered soils using biochar: feedstock, pyrolysis conditions and addition rate. Agronomy 10(6), 824. https://doi.org/10.3390/agronomy10060824
- 14. Fernandes, J., Chaves, L., Mendes, J., Chaves, I., and Tito, G. (2018). Soil chemical amendments and the macronutrients mobility evaluation in oxisol treated with biochar. Journal of Agricultural Science 10(10), 238, https://doi.org/10.5539/jas.v10n10p238
- 15. Frimpong, K., Abban-Baidoo, E., and Marschner, B. (2021). Can combined compost and biochar application improve the quality of a highly weathered coastal savanna soil. Heliyon 7(5), e07089. https://doi.org/10.1016/j.heliyon.2021.e07089
- 16. Gu, W., Wang, Y., Feng, Z., Wu, D., Zhang, H., Yuan, H., and Zhang, W. (2022). Long-term effects of biochar application with reduced chemical fertilizer on paddy soil properties and japonica rice production system. Frontiers in Environmental Science 10. https://doi.org/10.3389/fenvs.2022.902752
- 17. Günal, H., Bayram, Ö., Günal, E., and Erdem, H. (2019). Characterization of soil amendment potential of 18 different biochar types produced by slow pyrolysis. Eurasian Journal of Soil Science (Ejss) 8(4): 329–339, https://doi.org/10.18393/ejss.599760
- 18. Harahap, F., Arman, I., Harahap, N., Syawaluddin, F. and Yana, R. (2022). Provision of chicken manure and urea fertilizer on the chemical characteristics of Ultisol soil in Bilah Barat District. International Journal of Science and Environment (Ijse) 2(3): 98–103. https://doi.org/10.51601/ijse.v2i3.34
- 19. Jing, Y., Zhang, Y., Han, I., Wang, P., Mei, Q., and Huang, Y. (2020). Effects of different straw biochars on soil organic carbon, nitrogen, available phosphorus, and enzyme activity in paddy soil. Scientific Reports 10(1). https://doi.org/10.1038/s41598-020-65796-2
- 20. Kaya, E., Siregar, A., Matulessy, D., Hasan, M., and Akollo, A. (2022). Soil chemistry character, the N, P, and K uptake, and the growth and yield of corn (Zea mays L.) due to the application of ela sago palm waste compost and liquid organic fertilizer in ultisols. Journal of Tropical Soils 27(2), 49, https://doi.org/10.5400/jts.2022.v27i2.49-58
- 21. Levesque, V., Oelbermann, M., and Ziadi, N. (2022). Biochar in temperate soils: opportunities and challenges. Canadian Journal of Soil Science 102(1): 1–26. https://doi.org/10.1139/cjss-2021-0047
- 22. Li, M., Wang, Y., Liu, M., Liu, Q., Xie, Z., Li, Z., … and Chen, Y. (2019). Three‐year field observation of biochar‐mediated changes in soil organic carbon and microbial activity. Journal of Environmental Quality 48(3), 717–726, https://doi.org/10.2134/jeq2018.10.0354
- 23. Li, S., Ren, X., Yang, X., Ren, J., Wei, Z., Qin, Z. (2021). Biochar Application Rate Impacts Nutrient Availability and Phytoremediation Potential for Cdmium-Contaminated Soils. Science of the Total Environment 774, 145695, https://doi.org/10.1016/j.scitotenv.2021.145695
- 24. Listyarini, E., and Prabowo, Y. (2020). Effect of corncob biochar enriched with ammonium sulfate [(NH4)2SO4] on soil aggregate stability, several soil chemical properties, and corn plant growth. Jurnal Tanah Dan Sumberdaya Lahan 7(1): 101–108, https://doi.org/10.21776/ub.jtsl.2020.007.1.13 (in Indonesian).
- 25. Liu, M., Ma, S., Ma, Q., Song, W., Shen, M., Song, L., … and Wang, L. (2022). Biochar combined with organic and inorganic fertilizers promoted the rapeseed nutrient uptake and improved the purple soil quality. Frontiers in Nutrition 9, https://doi.org/10.3389/fnut.2022.997151
- 26. Moretti, S., Bertoncini, E., and Abreu-Junior, C. (2017). Carbon mineralization in soils irrigated with treated swine wastewater. Journal of Agricultural Science 9(3), 19, https://doi.org/10.5539/jas. v9n3p19
- 27. Mukhina, I., Rizhiya, E., Buchkina, N., and Balashov, E. (2019). Changes in soil conditions after application of biochar. Iop Conference Series Earth and Environmental Science 368(1), 012037, https://doi.org/10.1088/1755-1315/368/1/012037
- 28. Nguyen, T.T.N., Xu, C.Y., Tahmasbian, I., Che, R., Xu, Z., Zhou, X., Wallace, H.M., Bai, S.H., (2017). Effects of biochar on soil available inorganic nitrogen: A review and meta-analysis. Geoderma 288: 79–96, https://doi.org/10.1016/j. geoderma.2016.11.004
- 29. Norhalimah, A., Jumar, J., and NS, N. (2022). Effect of giving tofu dregs bokashi on phosphate dynamics in ultisols. Agrotech Journal 7(1): 1–6, https://doi.org/10.31327/atj.v7i1.1718
- 30. Okebalama, C., Asogwa, K., Uzoh, I., and Marschner, B. (2022). Impact of bambara seed residue biochar and npk on soil fertility, aggregate carbon and nitrogen concentrations and yield of cucumber. Agro-Science 21(2): 53–65, https://doi.org/10.4314/ as.v21i2.6
- 31. Prasetyo, B. (2021). Mineralogical and chemical characteristics of Spodosols in toba highland, north sumatra. Indonesian Journal of Agricultural Science 10(2), 54, https://doi.org/10.21082/ijas. v10n2.2009.54-64
- 32. Purwanto, B., Hanudin, E., and Destri, E. (2023). Accumulation levels of available cu and cu absorption in corn in Ultisols and Alfisols after the addition of fly ash and organic materials. Journal of Suboptimal Lands, 12(1): 11–26, https://doi.org/10.36706/ jlso.12.1.2023.617
- 33. Putra, M.O.P.S, Syahrinudin, Hartati, W., Kiswanto, Sudarmadji, T., Sofyan, F.P.M., and Hapsari, M.T. (2023). Enriched biochar enhances height growth performance of Anthocephalus cadamba on severely degraded Spodosols in East kalimantan. Iop Conference Series Earth and Environmental Science 1282(1), 012053, https://doi.org/10.1088/1755-1315/1282/1/012053
- 34. Raden, I., Fathillah, S., Fadli, M., and Suyadi, S. (2017). Nutrient content of liquid organic fertilizer (LOF) by various bioactivator and soaking time. Nusantara Bioscience 9(2): 209–213, https://doi.org/10.13057/nusbiosci/n090217
- 35. Rocha, J.V., Rocha, K.R., Klein, C., (2019). Testing for Normality. In: McManus M. (eds) Pathological Conditions Associated with Pregnancy. Springer Protocols Handbooks. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8948-2_2
- 36. Rogovska, N., Laird, D.A., Rathke, S.J., Karlen, D.L., (2014). Biochar impact on Midwestern Mollisols and maize nutrient availability. Geoderma 230–231, 340– 347, https://doi.org/10.1016/j.geoderma.2014.04.009
- 37. Singh, H., Northup, B., Rice, C., and Prasad, P. (2022). Biochar applications influence soil physical and chemical properties, microbial diversity, and crop productivity: a meta-analysis. Biochar 4(1), https://doi.org/10.1007/s42773-022-00138-1
- 38. Sulaeman, Suparto, Eviati. (2005). Technical Guidelines for Chemical Analysis of Soil, Plants, Water, and Fertilizers. Balai Penelitian Tanah, Badan Penelitian dan Pengembangan Pertanian, Departemen Pertanian, hlm. 45. [in Indonesian]
- 39. Sutikarini, S., Masulili, A., Suryani, R., Setiawan, S., and Mulyadi, M. (2023). Characteristics of pineapple waste as liquid organic fertilizer and its effect on ultisol soil fertility. International Journal of Multi Discipline Science (Ij-Mds) 6(1), 38, https://doi.org/10.26737/ij-mds.v6i1.3754
- 40. Syahrinudin, S., Hartati, W., Sudarmadji, T., Krisdianto, N., and Ibrahim, I. (2019). Biochar enriched with organic fertilizer improves the survival and growth rate of Anthocepalus cadamba seedlings planted on degraded Spodosols. Biodiversitas Journal of Biological Diversity 20(12), https://doi.org/10.13057/biodiv/d201237
- 41. Tessfaw, Z., Beyene, A., Nebiyu, A., Pikon, K., and Landrat, M. (2021). Short term effects of municipal solid waste compost, khat-derived biochar and cocomposted biochar on soil quality and faba bean yield and protein content, https://doi.org/10.21203/rs.3.rs-424999/v1
- 42. Utami, A., and Hidayat, B. (2021). Study of some chemical properties of ultisol soil applied by biochar and compos from some biomasses and incubation time. Iop Conference Series Earth and Environmental Science 782(4), 042040, https://doi.org/10.1088/1755-1315/782/4/042040
- 43. Wu, L., Zhao, F., He, X., Liu, H., and Yu, K. (2020). Increased organic fertilizer application and reduced chemical fertilizer application affect the soil properties and bacterial communities of grape rhizosphere soil. Scientific Reports 10(1), https://doi.org/10.1038/s41598-020-66648-9
- 44. Xu, G., Zhang, Y., Sun, J., and Shao, H. (2016). Negative interactive effects between biochar and phosphorus fertilization on phosphorus availability and plant yield in saline sodic soil. Science of the Total Environment 568: 910–915, https://doi.org/10.1016/j.scitotenv.2016.06.079
- 45. Yin, C., Schlatter, D., Kroese, D., Paulitz, T., and Hagerty, C. (2021). Responses of soil fungal communities to lime application in wheat fields in the pacific northwest. Frontiers in Microbiology 12, https://doi.org/10.3389/fmicb.2021.576763
- 46. Zhang, J., Zhang, Z., Shen G, Wang R, Gao L, Yanchen D, … and Zhang J. (2017). Tobacco growth responses and soil properties to rice-straw biochar applied on yellow‒brown soil in central China. Destech Transactions on Environment Energy and Earth Science, (edep). https://doi.org/10.12783/dteees/edep2016/5907
- 47. Zhang, Y., Chen, T., Liao, Y., Luo, X., Li, G., Luo, J., Lin, Q., (2022). Biochar increases phosphorus availability in acidic soils: A review. Pedosphere 32(2): 175–190, https://doi.org/10.1016/ S1002-0160(21)60064-5
- 48. Zheng, X., Song, W., Guan, E., Wang, Y., Hu, X., Liang, H., … and Dong J. (2020). Response in physicochemical properties of tobacco-growing soils and n/p/k accumulation in tobacco plant to tobacco straw biochar. Journal of Soil Science and Plant Nutrition 20(2): 293–305, https://doi.org/10.1007/ s42729-019-00108-w
- 49. Zivanov, M., Seremesic S., Bjelic, D., Marinkovic, J., Vasin, J., Ninkov, J., … and Milic, S. (2020). Response of chemical and microbial properties to short-term biochar amendment in different agricultural soils. Zbornik Matice Srpske Za Prirodne Nauke (138): 61–69, https://doi.org/10.2298/zmspn2038061z
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4799720c-84bb-4225-b28c-7f79dc5b725b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.