PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

In vitro examinations of the anti-inflammatory interleukin functionalized polydopamine based biomaterial as a potential coating for cardiovascular stents

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Despite advances in stent technologies, restenosis remains a serious problem of interventional cardiology and is considered as a consequence of the progressing inflammation within the vessel wall. Thus, attempts to extinguish this inflammatory process undoubtedly motivate the development of a coating that exhibits immunomodulatory properties. Hence, a polydopamine-based-coating functionalized with an anti-inflammatory interleukin is reported. By the ATR-FTIR spectroscopy and AFM examination the incorporation of cytokines into the coating structure is confirmed, thus effective functionalization is proved. The gradual delivery of cytokines allows to limit the influence of IL-4 and IL-10 deficiency, which is recognized as a restenosis risk factor. A relatively steady cytokine release profile exhibits therapeutic potential in the first days after implantation and in preventing late complications on cellular model. In vitro coating studies prove the promotion of endothelialization in the initial stage after implantation, being consistent with present treatment strategies. The limitation of IL-8 and MCP-1 daily release by coatinginteracted-endothelium significantly reduce another risk factor of restenosis. Finally, by assessing the changes in THP-1 differentiation, the coating immunological activity is confirmed, so the binding procedure do not impair biological properties of the interleukin. Therefore, it can be concluded that proposed anti-inflammatory coating can reduce the probability of restenosis to a minimum.
Twórcy
  • Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wrocław University of Science and Technology, Wrocław, Poland
  • Department of Microbiology, Faculty of Medicine, Wrocław Medical University, Wrocław, Poland
  • Department of Experimental Oncology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
  • Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wrocław University of Science and Technology, Wrocław, Poland
  • Department of Experimental Oncology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
  • Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wrocław University of Science and Technology, Wrocław, Poland
  • Center of Preclinical Studies, Wrocław Medical University, Wrocław, Poland
  • Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wrocław University of Science and Technology, Wrocław, Poland
Bibliografia
  • [1] Ullrich H, Olschewski M, Münzel T, Gori T. Coronary In-Stent Restenosis: Predictors and Treatment. Dtsch Arztebl Int 2021;118:637. https://doi.org/10.3238/ARZTEBL.M2021.0254.
  • [2] Pleva L, Kukla P, Hlinomaz O. Treatment of coronary in-stent restenosis: A systematic review. J Geriatr Cardiol 2018;15:173-84. https://doi.org/10.11909/j.issn.1671-5411.2018.02.007.
  • [3] Gerard J. Wall, Halina. Podbielska, Magdalena. Wawrzyńska, Functionalized cardiovascular stents, 2017.
  • [4] Buccheri D, Piraino D, Andolina G, Cortese B. Understanding and managing in-stent restenosis: A review of clinical data, from pathogenesis to treatment. J Thorac Dis 2016;8: E1150-62. https://doi.org/10.21037/jtd.2016.10.93.
  • [5] Meraj PM, Jauhar R, Singh A. Bare metal stents versus drug eluting stents: where do we stand in 2015? Curr Treat Options Cardiovasc Med 2015;17. https://doi.org/10.1007/s11936-015- 0393-y.
  • [6] Nakamura D, Dohi T, Ishihara T, Kikuchi A, Mori N, Yokoi K, et al. Predictors and outcomes of neoatherosclerosis in patients with in-stent restenosis. EuroIntervention 2021;17:489-96. https://doi.org/10.4244/EIJ-D-20-00539.
  • [7] Kawai K, Virmani R, Finn AV. In-Stent Restenosis. Interv Cardiol Clin 2022;11:429-43. https://doi.org/10.1016/J. ICCL.2022.02.005.
  • [8] Looser PM, Kim LK, Feldman DN. In-stent restenosis: Pathophysiology and treatment. Curr Treat Options Cardiovasc Med 2016;18. https://doi.org/10.1007/s11936-015-0433-7.
  • [9] Schirone L, Forte M, D’ambrosio L, Valenti V, Vecchio D, Schiavon S, et al. An Overview of the molecular mechanisms associated with myocardial ischemic injury: state of the art and translational perspectives. Cells 2022;11. https://doi.org/ 10.3390/CELLS11071165.
  • [10] Wilson S, Mone P, Kansakar U, Jankauskas SS, Donkor K, Adebayo A, et al. Diabetes and restenosis. Cardiovasc Diabetol 2022;21:1-14. https://doi.org/10.1186/S12933-022-01460-5/TABLES/1.
  • [11] Inoue T, Croce K, Morooka T, Sakuma M, Node K, Simon DI. Vascular Inflammation and repair: implications for reendothelialization, restenosis, and stent thrombosis. JACC Cardiovasc Interv 2011;4:1057-66. https://doi.org/10.1016/J. JCIN.2011.05.025.
  • [12] Clare J, Ganly J, Bursill CA, Sumer H, Kingshott P, de Haan JB. The mechanisms of restenosis and relevance to next generation stent design. Biomolecules 2022;12. https://doi. org/10.3390/BIOM12030430.
  • [13] Ciechanowska A, Gora I, Sabalinska S, Foltynski P, Ladyzynski P. Effect of glucose concentration and culture substrate on HUVECs viability in in vitro cultures: A literature review and own results. Biocybern Biomed Eng 2021;41:1390-405. https:// doi.org/10.1016/J.BBE.2021.04.010.
  • [14] Ebert MLA, Schmidt VF, Pfaff L, von Thaden A, Kimm MA, Wildgruber M. Animal models of neointimal hyperplasia and restenosis: species-specific differences and implications for translational research. JACC Basic Transl Sci 2021;6:900-17. https://doi.org/10.1016/J.JACBTS.2021.06.006.
  • [15] Li P, Cai W, Li X, Wang K, Zhou L, Shang T, et al. Tellurium-containing polymer coating with glutathione peroxidase mimics capability for surface modification of intravascular implants. Mater Des 2022;217:110622. https://doi.org/10.1016/ J.MATDES.2022.110622.
  • [16] Li P, Cai W, Li X, Zhang H, Zhao Y, Wang J. Sulfur-mediated polycarbonate polyurethane for potential application of blood-contacting materials. Front Bioeng Biotechnol 2022;10. https://doi.org/10.3389/FBIOE.2022.874419.
  • [17] Wolf D, Ley K. Immunity and inflammation in atherosclerosis. Circ Res 2019;124:315–27. https://doi.org/ 10.1161/CIRCRESAHA.118.313591.
  • [18] Bedair TM, ElNaggar MA, Joung YK, Han DK. Recent advances to accelerate re-endothelialization for vascular stents. J Tissue Eng 2017;8. https://doi.org/10.1177/2041731417731546.
  • [19] Diaz-Rodriguez S, Rasser C, Mesnier J, Chevallier P, Gallet R, Choqueux C, et al. Coronary stent CD31-mimetic coating favours endothelialization and reduces local inflammation and neointimal development in vivo. Eur Heart J 2021;42:1760-9. https://doi.org/10.1093/EURHEARTJ/EHAB027.
  • [20] Milutinović A, Šuput D, Zorc-Pleskovič R. Pathogenesis of atherosclerosis in the tunica intima, media, and adventitia of coronary arteries: An updated review. Bosn J Basic Med Sci 2020;20:21-30. https://doi.org/10.17305/bjbms.2019.4320.
  • [21] Dai Y-L, Zhou J, Jiang Y-F, Hu S-D, He Y-M. Immunosuppressive Therapy for Restenosis Prevention after Coronary Bare-Metal Stent Implantation-A Meta-Analysis, 2019. https://doi.org/10.21203/rs.2.16970/v1.
  • [22] Li M, Gao L, Chen J, Zhang Y, Wang J, Lu X, et al. Controllable release of interleukin-4 in double-layer sol-gel coatings on TiO2 nanotubes for modulating macrophage polarization. Biomed Mater 2018;13:045008. https://doi.org/10.1088/1748-605X/AA9526.
  • [23] Alotaibi HF, Perni S, Prokopovich P. Nanoparticle-based model of anti-inflammatory drug releasing LbL coatings for uncemented prosthesis aseptic loosening prevention. Int J Nanomedicine 2019;14:7309-22. https://doi.org/10.2147/IJN. S217112.
  • [24] Chandra G, Pandey A. Biodegradable bone implants in orthopedic applications: a review. Biocybern Biomed Eng 2020;40:596-610. https://doi.org/10.1016/J.BBE.2020.02.003.
  • [25] Gao L, Li M, Yin L, Zhao C, Chen J, Zhou J, et al. Dual-inflammatory cytokines on TiO2 nanotube-coated surfaces used for regulating macrophage polarization in bone implants. J Biomed Mater Res A 2018;106:1878-86. https://doi. org/10.1002/JBM.A.36391.
  • [26] Tarique AA, Logan J, Thomas E, Holt PG, Sly PD, Fantino E. Phenotypic, functional, and plasticity features of classical and alternatively activated human macrophages. Am J Respir Cell Mol Biol 2015;53:676-88. https://doi.org/10.1165/RCMB.2015-0012OC.
  • [27] Yao Y, Xu XH, Jin L. Macrophage polarization in physiological and pathological pregnancy. Front Immunol 2019;10:792. https://doi.org/10.3389/FIMMU.2019.00792/BIBTEX.
  • [28] Liu J, Geng X, Hou J, Wu G. New insights into M1/M2 macrophages: key modulators in cancer progression. Cancer Cell Int 2021;21. https://doi.org/10.1186/S12935-021-02089-2.
  • [29] Tan RP, Ryder I, Yang N, Lam YT, Santos M, Michael PL, et al. Macrophage polarization as a novel therapeutic target for endovascular intervention in peripheral artery disease. JACC Basic Transl Sci 2021;6:693. https://doi.org/10.1016/J. JACBTS.2021.04.008.
  • [30] Hachim D, LoPresti ST, Yates CC, Brown BN. Shifts in macrophage phenotype at the biomaterial interface via IL-4 eluting coatings are associated with improved implant integration. Biomaterials 2017;112:95-107. https://doi.org/ 10.1016/J.BIOMATERIALS.2016.10.019.
  • [31] Yang CL, Sun YH, Yu WH, Yin XZ, Weng J, Feng B. RETRACTED: Modulation of macrophage phenotype through controlled release of interleukin-4 from gelatine coatings on titanium surfaces. Eur Cell Mater 2018;36:15-29. https://doi. org/10.22203/ECM.V036A02.
  • [32] Sun J, Yu H, Liu H, Pu D, Gao J, Jin X, et al. Correlation of preoperative circulating inflammatory cytokines with restenosis and rapid angiographic stenotic progression risk in coronary artery disease patients underwent percutaneous coronary intervention with drug-eluting stents. J Clin Lab Anal 2020;34. https://doi.org/10.1002/JCLA.23108.
  • [33] Hansrani M, Stanford J, McIntyre G, Bottasso O, Stansby G. Immunotherapy for the prevention of myointimal hyperplasia after experimental balloon injury of the rat carotid artery. Angiology 2010;61:437-42. https://doi.org/ 10.1177/0003319710366128.
  • [34] Verma SK, Garikipati VNS, Krishnamurthy P, Khan M, Thorne T, Qin G, et al. IL-10 accelerates re-endothelialization and inhibits post-injury intimal hyperplasia following carotid artery denudation. PLoS One 2016;11. https://doi.org/10.1371/ JOURNAL.PONE.0147615.
  • [35] Givtaj N, Bassiri HA, Peighambari MM, Noohi F, Bakhshandeh H. Serum level of interleukin-18 to Interleukin-10 ratio after percutaneous coronary intervention: A new predictor of InStent restenosis (accessed September 19, 2022). Int J Medical Res Health Sci 2018;5:12-6. Available from: https://www. indianjournals.com/ijor.aspx?target=ijor:ijmrhs&volume=5& issue=10&article=003.
  • [36] Li X, Hu H, Guo D, Hu Y, Zhou H, Chen Y, Fang X. Imbalance of pro- and anti-inflammatory cytokines induced different types of recurrent atrial arrhythmias after drug eluting coronary stent implantation. Curr Vasc Pharmacol 2022;20. https://doi.org/10.2174/1570161120666220831094507.
  • [37] Ljuca F, Hadžiefendić B, Jahić E, Tihić N, Lukić S. Pentraxin 3 might be better prognostic serum marker than IL-6, IL-10, and high-sensitivity C-reactive protein for major adverse cardiovascular events in patients with ST-elevation myocardial infarction after bare-metal stent implantation. Saudi Med J 2019;40:1202. https://doi.org/10.15537/SMJ.2019.12.24737.
  • [38] Zhang R, Li T, Guo J, Zhao Y, Liu Y, Yao Y, et al. Fufang-Zhenzhu-Tiaozhi Capsule reduces restenosis via the downregulation of NF-kappaB and inflammatory factors in rabbits. Lipids Health Dis 2018;17:1-9. https://doi.org/10.1186/ S12944-018-0921-3/FIGURES/5.
  • [39] Wong WK, Lai CHN, Cheng WY, Tung LH, Chang RCC, Leung FKC. Polymer-metal composite healthcare materials: from nano to device scale. J Compos Sci 2022;6:218. https://doi.org/ 10.3390/JCS6080218.
  • [40] Alfieri ML, Weil T, Ng DYW, Ball V. Polydopamine at biological interfaces. Adv Colloid Interface Sci 2022;305:102689. https://doi.org/10.1016/J.CIS.2022.102689.
  • [41] Honmane SM, Charde MS, Salunkhe SS, Choudhari PB, Nangare SN. Polydopamine surface-modified nanocarriers for improved anticancer activity: Current progress and future prospects. OpenNano 2022;7:100059. https://doi.org/10.1016/J. ONANO.2022.100059.
  • [42] Yang Y, Qi P, Wen F, Li X, Xia Q, Maitz MF, et al. Mussel-inspired one-step adherent coating rich in amine groups for covalent immobilization of heparin: Hemocompatibility, growth behaviors of vascular cells, and tissue response. ACS Appl Mater Interfaces 2014;6:14608-20. https://doi.org/ 10.1021/AM503925R/SUPPL_FILE/AM503925R_SI_001.PDF.
  • [43] Wang Y, Zhang Y, Hou C, Liu M. Mussel-inspired synthesis of magnetic polydopamine-chitosan nanoparticles as biosorbent for dyes and metals removal. J Taiwan Inst Chem Eng 2016;61:292-8. https://doi.org/10.1016/J.JTICE.2016.01.008.
  • [44] Jumat MA, Chevallier P, Mantovani D, Saidin S. Everolimus immobilisation using polydopamine intermediate layer on poly(l-lactic acid)/poly(d-lactic acid) scaffold for sustainable anti-proliferative drug release. Mater Today Commun 2022;31:103720. https://doi.org/10.1016/J.MTCOMM.2022.103720.
  • [45] Cheng Y, Zhang X, Liu R, Li Y, Zeng J, Zhou M, et al. Bioinspired vascular stents with microfluidic electrospun multilayer coatings for preventing in-stent restenosis. Adv Healthc Mater 2022;11:2200965. https://doi.org/10.1002/ ADHM.202200965.
  • [46] Deng Z, Wang W, Xu X, Ma N, Lendlein A. Polydopamine-based biofunctional substrate coating promotes mesenchymal stem cell migration. MRS Adv 2021;6:739-44. https://doi.org/10.1557/S43580-021-00091-4/FIGURES/2.
  • [47] Hertault A, Chai F, Maton M, Sobocinski J, Woisel P, Maurel B, et al. In vivo evaluation of a pro-healing polydopamine coated stent through an in-stent restenosis rat model. Biomater Sci 2021;9:212–20. https://doi.org/10.1039/D0BM01204A.
  • [48] Li H, Yin D, Li W, Tang Q, Zou L, Peng Q. Polydopamine-based nanomaterials and their potentials in advanced drug delivery and therapy. Colloids Surf B Biointerfaces 2021;199. https:// doi.org/10.1016/J.COLSURFB.2020.111502 111502.
  • [49] Wang T, Bai J, Lu M, Huang C, Geng D, Chen G, Wang L, Qi J, Cui W, Deng L. Engineering immunomodulatory and osteoinductive implant surfaces via mussel adhesion-mediated ion coordination and molecular clicking. Nature Commun 2022;13:1-17. https://doi.org/10.1038/s41467-021-27816-1.
  • [50] Sehgal PB. Interleukin-6 at the host-tumor interface: STAT3 in biomolecular condensates in cancer cells. Cells 2022;11. https://doi.org/10.3390/CELLS11071164.
  • [51] Zhong L, Zhai J, Ma Y, Huang Y, Peng Y, Wang YE, et al. Molecularly imprinted polymers with enzymatic properties reduce cytokine release syndrome. ACS Nano 2022;16:3797-807. https://doi.org/10.1021/ACSNANO.1C08297/SUPPL_FILE/NN1C08297_SI_001.PDF.
  • [52] Fu Y, Yang L, Zhang J, Hu J, Duan G, Liu X, et al. Polydopamine antibacterial materials. Mater Horiz 2021;8:1618-33. https://doi.org/10.1039/D0MH01985B.
  • [53] Lim K, Chua RRY, Ho B, Tambyah PA, Hadinoto K, Leong SSJ. Development of a catheter functionalized by a polydopamine peptide coating with antimicrobial and antibiofilm properties. Acta Biomater 2015;15:127-38. https://doi.org/ 10.1016/J.ACTBIO.2014.12.015.
  • [54] Huang S, Liang N, Hu Y, Zhou X, Abidi N. Polydopamine-assisted surface modification for bone biosubstitutes. Biomed Res Int 2016;2016. https://doi.org/10.1155/2016/2389895.
  • [55] Kong J, Yu S. Fourier transform infrared spectroscopic analysis of protein secondary structures. Acta Biochim Biophys Sin (Shanghai) 2007;39:549-59. https://doi.org/10.1111/J.1745-7270.2007.00320.X.
  • [56] Munje RD, Muthukumar S, Jagannath B, Prasad S. A new paradigm in sweat based wearable diagnostics biosensors using Room Temperature Ionic Liquids (RTILs). Sci Rep 2017;7:1-12. https://doi.org/10.1038/s41598-017-02133-0.
  • [57] Lee H, Rho J, Messersmith PB. Facile conjugation of biomolecules onto surfaces via mussel adhesive protein inspired coatings. Adv Mater 2009;21:431-4. https://doi.org/ 10.1002/ADMA.200801222.
  • [58] Morent R, de Geyter N, Leys C, Gengembre L, Payen E. Comparison between XPS- and FTIR-analysis of plasma-treated polypropylene film surfaces, Surface and Interface. Analysis 2008;40:597-600. https://doi.org/10.1002/SIA.2619.
  • [59] Kane SR, Ashby PD, Pruitt LA. ATR-FTIR as a thickness measurement technique for hydrated polymer-on-polymer coatings. J Biomed Mater Res B Appl Biomater 2009;91B:613-20. https://doi.org/10.1002/JBM.B.31436.
  • [60] Han X, Tang F, Jin Z. Free-standing polydopamine films generated in the presence of different metallic ions: The comparison of reaction process and film properties. RSC Adv 2018;8:18347-54. https://doi.org/10.1039/c8ra02930j.
  • [61] Ball V, del Frari D, Toniazzo V, Ruch D. Kinetics of polydopamine film deposition as a function of pH and dopamine concentration: Insights in the polydopamine deposition mechanism. J Colloid Interface Sci 2012;386:366-72. https://doi.org/10.1016/J.JCIS.2012.07.030.
  • [62] Tsai WB, Chen WT, Chien HW, Kuo WH, Wang MJ. Poly (dopamine) coating to biodegradable polymers for bone tissue engineering. J Biomater Appl 2014;28:837-48. https:// doi.org/10.1177/0885328213483842.
  • [63] Zhou K, Li Y, Zhang L, Jin L, Yuan F, Tan J, et al. Nano-micrometer surface roughness gradients reveal topographical influences on differentiating responses of vascular cells on biodegradable magnesium. Bioact Mater 2021;6:262-72. https://doi.org/10.1016/J.BIOACTMAT.2020.08.004.
  • [64] Yin X, Li Y, Yang C, Weng J, Wang J, Zhou J, et al. Alginate/chitosan multilayer films coated on IL-4-loaded TiO2 nanotubes for modulation of macrophage phenotype. Int J Biol Macromol 2019;133:503-13. https://doi.org/10.1016/J. IJBIOMAC.2019.04.028.
  • [65] Tedesco S, de Majo F, Kim J, Trenti A, Trevisi L, Fadini GP, et al. Convenience versus biological significance: Are PMA-differentiated THP-1 cells a reliable substitute for blood-derived macrophages when studying in vitro polarization? Front Pharmacol 2018;9. https://doi.org/10.3389/ FPHAR.2018.00071/FULL.
  • [66] Toma M, Tawa K. Polydopamine thin films as protein linker layer for sensitive detection of interleukin-6 by surface plasmon enhanced fluorescence spectroscopy. ACS Appl Mater Interfaces 2016;8:22032-8. https://doi.org/10.1021/ ACSAMI.6B06917/SUPPL_FILE/AM6B06917_SI_001.PDF.
  • [67] Dimosiari A, Patoulias D, Kitas GD, Dimitroulas T. Do Interleukin-1 and Interleukin-6 Antagonists Hold Any Place in the Treatment of Atherosclerotic Cardiovascular Disease and Related Co-Morbidities? An Overview of Available Clinical Evidence. J. Clin. Med. 2023;12(4):1302. https://doi. org/10.3390/jcm12041302.
  • [68] Li F, Rong Z, Zhang R, Niu S, Di X, Ni L, Liu C. Vascular restenosis reduction with platelet membrane coated nanoparticle directed M2 macrophage polarization. iScience. 2022;25(10):105147. https://doi.org/10.1016/j.isci.2022.105147.
  • [69] Li X, Guo D, Chen Y, Youdong H, Zhang F. Effects of Altered Levels of Pro- and Anti-Inflammatory Mediators on Locations of In-Stent Reocclusions in Elderly Patients. Mediators Inflamm. 2020;23(2020):1719279. https://doi.org/10.1155/2020/ 1719279.
  • [70] Tong X, Zhao X, Dang X, Kou Y, Kou J. Biomarkers Associated with Immune Checkpoint, N6-Methyladenosine, and Ferroptosis in Patients with Restenosis. J Inflamm Res. 2023;2 (16):407-20. https://doi.org/10.2147/JIR.S392036.
  • [71] Saik O, Sobolevskaya E, Khapaev R, Shumkov O, Smagin M, Nimaev V. Revealing the Molecular Basis of Vascular Restenosis by Gene Network Analysis. In: 2022 IEEE International Multi-Conference on Engineering, Computer and Information Sciences (SIBIRCON). Russian Federation: Yekaterinburg; 2022. p. 350-3. https://doi.org/ 10.1109/SIBIRCON56155.2022.10016949.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4794fcd0-8535-488d-9d86-89054c8dadf6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.