Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Konferencja
Symposium Vibrations In Physical Systems (23 ; 28-31.05.2008 ; Będlewo koło Poznania ; Polska)
Języki publikacji
Abstrakty
The influence of step changes in cross-section of beams with different boundary conditions on their dynamic stability was investigated in the paper. The change in the crosssections took place in an optional location along the beam length. The investigated beams were axially loaded by a force in the form P(t)= P0+Scosνt. The problem of dynamic stability was solved by applying the mode summation method. The obtained Mathieu equation allowed the dynamic stability of tested systems to be analysed. The analysis relied on testing the influence of step changes in beam cross-sections and their locations on the value of coefficient b in the Mathieu equation. The considered beams were treated as Euler- Bernoulli beams.
Czasopismo
Rocznik
Tom
Strony
327--333
Opis fizyczny
Bibliogr. 8 poz., 1 rys., wykr.
Twórcy
autor
- Institute of Mechanics and Machine Design Foundations, Częstochowa University of Technology, ul. Dąbrowskiego 73, 42–200 Częstochowa
Bibliografia
- 1. S. K. Jang, C. W. Bert, Free vibration of stepeed beams: exact and numerical solutions, Journal of Sound and Vibration 130 (1989) 342-346.
- 2. S. K. Jang, C. W. Bert, Free vibration of stepeed beams: higher mode frequencies and effects of steps on frequency, Journal of Sound and Vibration 132(1) (1989) 164-168.
- 3. S. Naguleswaran, Vibration of an Euler-Bernoulli beam on elastic end supports and with up to three step changes in cross-section, Mechanical Sciences 44 (2002) 2541- 2555.
- 4. S. Kukla, I. Zamojska, Frequency analysis of axially loaded stepped beams by Green’s function method, Journal of Sound and Vibration 300 (2007) 1034-1041.
- 5. T. Iwatsubo, Y. Sugijama, S. Ogino, Simple and combination resonanses of columns under periodic axial loads, Journal of Sound and Vibration 33(2) (1974) 211-221.
- 6. O. J. Aldraihem, A. Baz, Dynamic stability of stepped beams under moving loads, Journal of Sound and Vibration 205(5) (2002) 835-848.
- 7. Craig Jr., R. R., Structural Dynamics, New York, Wiley ( 1981).
- 8. S. P. Timoshenko, J. E. Gere, Theory of Elastic Stability, Mc Graw–Hill – INC. (1961).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-479407eb-c6f7-425a-80be-2cd6a2c74084