PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

An Improved Downlink MC-CDMA System for Effcient Image Transmission

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Image compression is an essential stage of the data archiving and transmitting process, as it reduces the number of bits and the time required to complete the transmission. In this article, a study of image transmission over the Multi-Carrier Code Division Multiple Access (MC-CDMA) downlink system is presented. The solution proposed relies on source coding combined with channel coding. The Discrete Wavelet Transform (DWT) method is used in conjunction with the SPIHT coder to compress the image, then the data generated is transmitted with the MC-CDMA technique over a noisy channel. The results show that image transmissions performed over MC-CDMA using the SPIHT model are better than the traditional approach like MC-CDMA in the AWGN channel.
Słowa kluczowe
Rocznik
Tom
Strony
5--16
Opis fizyczny
Bibliogr. 33 poz., fot., rys., tab.
Twórcy
  • Department of Technologie, Sciences Institute, University Center Nour Bachir of El-Bayadh, El-Bayadh, 32000, Algeria
autor
  • Telecommunications and Digital Signal Processing Laboratory, Djillali Liabes University, Sidi Bel Abbes, 22000, Algeria
  • Biomedical Laboratory, Abou Bekr Belkaid University, Tlemcen, 13000, Algeria
  • Laboratoire LAMIH UMR CNRS 8530, Valenciennes et du Hainaut Cambrésis University, Valenciennes, 59313, France
Bibliografia
  • [1] C. E. Shannon, “A mathematical theory of communication”, The Bell System Tech. J., vol. 27, no. 3, pp. 379–423, 1948.
  • [2] C. E. Shannon, “Coding theorems for a discrete source with a fidelity criterion”, IRE Int. Conv. Rec., pp. 142–163, 1959.
  • [3] H. Keang-Po and M. K. Joseph, “Image transmission over noisy channels using multicarrier modulation”, Signal Process.: Image Commun., vol. 9, no. 2, pp. 159–169, 1997.
  • [4] J. Latal et al., “Experimental measurement of thermal turbulence effects on modulated optical beam in the laboratory”, in Proc. 19th OptoElectron. and Commun. Conf. and 39th Australian Conf. on Optical Fibre Technol. OECC/ACOFT 2014, Melbourne, Australia, 2014, pp. 455–457.
  • [5] E. M. El-Bakary et al., “Efficient Image Transmission with Multi-Carrier CDMA”, Wireless Pers. Commun., vol. 69, no. 2, pp. 979–994, 2013 (doi: 10.1007/s11277-012-0622-6).
  • [6] H. Schulze and C. Luders, Theory and Applications of OFDM and CDMA. New York: Wiley, 2005.
  • [7] K. Fazel and S. Kaiser, Multi-Carrier and Spread Spectrum Systems. Chichester: Wiley, 2003.
  • [8] S. Hara and R. Prasad, “Overview of multicarrier CDMA”, IEEE Commun. Mag., vol. 35, no. 12, pp. 126–133, 1997 (doi: 10.1109/35.642841).
  • [9] S. Verdu, Multiuser Detection. Cambridge, UK: Cambridge University Press, 1998.
  • [10] P. P. Dang and P. M. Chau, “Robust image transmission over CDMA channels”, IEEE Trans. on Consumer Electron., vol. 46, no. 3, pp. 664–672, 2000.
  • [11] T. Kathiyaiah and T. H. Oh, “Robust JPEG2000 image transmission through low SNR Multi-Carrier CDMA system in frequencyselective Rayleigh fading channels: a performance study”, Int. J. Wavelets Multiresolut Inform. Process., vol. 9, no. 2, pp. 283–303, 2011.
  • [12] T. H. Oh and G. T. Kim, “Image transmission through MC-CDMA channel: an image quality evaluation”, Int. J. Wavelets Multiresolut Inf. Process., vol. 6, no. 6, pp. 827–849, 2008.
  • [13] K. Ramchandran, M. Vetterli, and C. Herley, “Wavelets subband coding and best bases”, Proceedings of the IEEE, vol. 84, no. 4, pp. 541–560, 1996.
  • [14] R. C. Gonzalez and R. E. Woods, Digital Image Processing. PearsonPrentice Hall, 2005.
  • [15] A. S. Vijendran and B. Vidhya, “A hybrid image compression technique using wavelet transformation – MFOCPN and Interpolation”, Global J. of Com. Science and Technol., vol. 11, no. 3, pp. 57–62, 2011.
  • [16] N. Sprljan, S. Grgic, and M. Grgic, “Modified SPIHT algorithm for wavelet packet image coding”, Real Time Imag., vol. 11, no. 5–6, pp. 378–388, 2005.
  • [17] A. Said and A. P. William, “A new, fast, and efficient image codec based on set partitioning in hierarchical trees”, IEEE Trans. Circuits and Syst. for Video Technol., vol. 6, no. 3, pp. 243–250, 1996 (doi: 10.1109/76.499834).
  • [18] A. Bouridane et al., “A very low bit-rate embedded color image coding with SPIHT”, in Proc. IEEE Int. Conf. on Acoust., Speech and Sig. Process. ICASSP 2004, Montreal, Quebec, Canada, 2004, pp. 689–692.
  • [19] J. M. Shapiro, “Embedded image coding using zerotrees of wavelet coefficients”, IEEE Trans. on Signal Process., vol. 41, no. 12, pp. 3445–3462, 1993.
  • [20] I. Boukli-Hacene, M. Beladghem, and A. Bessaid, “Lossy compression color medical image using CDF wavelet lifting scheme”, I. J. Image, Graphics and Sig. Process., vol. 11, pp. 53–60, 2013 (doi: 10.5815/ijigsp.2013.11.06).
  • [21] T. Brahimi, A. Melit, and F. Khelifib, “An improved SPIHT algorithm for lossless image coding”, Digit. Sig. Process., vol. 19, no. 2, pp. 220–228, 2009.
  • [22] S. G. Miaou, S. T. Chen, and S. N. Chao, “Wavelet-based lossyto-lossless medical image compression using dynamic VQ and SPIHT coding”, Biomed. Eng. Appl. Basis Commun., vol. 15, no. 6, pp. 235–242, 2003.
  • [23] Y. Y. Chen and S. C. Tai, “Embedded medical image compression using DCT based subband decomposition and modified SPIHT data organization”, in Proc. 4th IEEE Symp. on Bioinform. and Bioengin. BIBE 2004, Taichung, Taiwan, 2004 (doi: 10.1109/BIBE.2004.1317339).
  • [24] M. Beladgham et al., “MRI image compression using Biorthogonal CDF wavelet based on lifting scheme and SPIHT coding”, in Proc. 4th Int. Conf. on Elec. Engin. CIGE’10, Bechar, Algeria, 2010, pp. 225–232, 2010.
  • [25] Z. Xiong, K. Ramchandran, and M. Orchard, “Space frequency quantization for wavelet image coding”, IEEE Trans. on Image Process., vol. 6, no. 5, pp. 677–693, 1997.
  • [26] K. A. Navas, M. L. Aravind, and M. Sasikumar, “A novel quality measure for information hiding in images”, in Proc. IEEE Comp. Society Conf. on Comp. Vision and Pattern Recogn. Worksh. CVPRW’08, Anchorage, AK, USA, 2008 (doi: 10.1109/CVPRW.2008.4562985).
  • [27] M. Doaa and F. Abou-Chadi, “Image compression using block truncation coding”, J. of Selec. Areas in Telecommun. (JSAT), pp. 9–13, 2011.
  • [28] W. S. Geislerand and M. S. Banks, “Visual performance” in Handbook of Optics, vol. III, M. Bass, Ed. McGraw-Hill, 1995.
  • [29] A. B. Watson and L. Kreslake, “Measurement of visual impairment scales for digital video”, Proc. of SPIE, Human Vision and Electronic Imaging VI, 79, vol. 4299, pp. 79–89, 2001 (doi: 10.1117/12.429526).
  • [30] M. S. Salih et al., “A proposed improvement model of MCCDMA based FFT in AWGN channel”, in IEEE Int. Conf. on Electro/Inform. Technol., Chicago, IL, USA, 2007, pp. 517–520 (doi: 10.1109/EIT.2007.4374460).
  • [31] S. Nobilet, J.-F Helard, and D. Mottier, “Spreading sequences for uplink and downlink MC-CDMA systems: PAPR and MAI minimization”, European Trans. on Telecommun., vol. 13, pp. 465–474, 2002.
  • [32] K. Fazel and S. Kaiser, Multi-Carrier and Spread Spectrum Systems. New York: Wiley, 2008.
  • [33] A. Gupta, P. Nigam, and V. Chaurasia, “Removal of cyclic prefix in adaptive OFDM for dynamic spectrum access using DWT and WT”, Int. J. of Engin. Sci. & Res. Technol., vol. 3, no. 3, pp. 1187–1191, 2014.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-47934e8b-38e4-4c12-834d-3267ecdde23f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.