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1. Introduction. 

Reliability indices of complex systems can be 
estimated from the results of lifetime tests. When a 
system is treated as one entity we can distinguish 
two different types of reliability tests. In the first 
one, we observe consecutive failures of a system, 
and after each of them a failed system is completely 
renewed. In such case, random times between 
consecutive failures are described by independent 
random variables having and identical probability 
distributions. If this assumption is true, we can 
estimate a required reliability characteristic using a 
sample of observed lifetimes. In the second case, we 
have to observe several identical systems working in 
the same conditions. Times to first failures of these 
systems constitute a sample which may be used for 
the estimation of the considered reliability 
characteristic. In both cases, however, we need to 
have either sufficiently long time of test or 
sufficiently large number of observed systems. Both 
these requirements are seldom met in practice. Thus, 
this method of the reliability estimation is rarely 
used in practice despite the fact that from a statistical 
point of view the required estimators are obtained in 
the simplest possible way. Moreover, in such a case 
we do not profit from the information about the 
structure of the considered system, and from the 
knowledge of times to failure of its elements.  
In practice we are frequently faced with a different 
problem: how to evaluate reliability characteristics 
of a system on its design stage. There exist many 

methods for the prediction of reliability using 
available statistical data. In this paper we consider 
the simplest one, when we can utilize the results of 
reliability tests of system’s elements performed in 
presumably the same conditions as the conditions of 
work of the designed complex system. 
Research studies on statistical methods aimed at the 
estimation of system’s reliability using the results of 
reliability tests of its elements were initiated 
independently in the 1950s in the United States and 
the Soviet Union, where they were performed by 
prominent mathematicians and statisticians. Some 
strong mathematical results were obtained, and these 
results can be used for both point and interval 
estimation of system’s reliability using the data 
obtained for its elements or subsystems. In this paper 
we will focus our attention on the interval 
estimation. The reason for the importance of the 
results of this type stems from practice. Usually we 
can use scarce reliability data, and thus the obtained 
point estimators are not very precise. Therefore, we 
need to know some lower bounds for the predicted 
reliability characteristics.  
Preliminary analysis of the theoretical results shows 
undoubtedly that even in the cases of simple systems 
exact analytical methods require utilization of 
complex mathematical tools such as nonlinear 
mathematical programming. On the other hand, 
interesting approximate results, obtained mainly by 
American researchers, can be used in practice when 
a sufficiently large number of failures have been 
observed. For this reasons already in the 1980s the 
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reliability theoreticians lost their interest in further 
research in this area. However, the problem is stall 
interesting for practitioners who need approximate, 
or even heuristic, methods which may be used for 
the prediction of reliability using existing statistical 
data.  
The purpose of this paper is two-fold. In first six 
sections we give a short overview of different 
methods for the construction of confidence intervals 
for the reliability of systems. In all these methods it 
has been assumed that the elements of a system are 
independent. In the last section of the paper we 
present new bounds which in certain practical cases 
are robust to deviations from the assumption of 
independence. 
 
2. General methodology for the evaluation of 
system’s reliability 

Evaluation of reliability of complex systems became 
the subject of intensive theoretical investigation in 
the beginning of 1960s. Fundamental results were 
summarized in the famous book by Barlow and 
Proschan [1]. In the mathematical models considered 
in [1] it is assumed that both the system as a whole, 
and system’s elements at any time instant t>0 are 
either in the state of functioning (or failure-free 
state), when the random variable X(t) describing the 
reliability state adopts the value 1, or  in the state of 
failure, when this random variable adopts the value 
0. When the considered system consists of m 
elements, then its reliability state is described by the 
random vector ( )mX,X,X …21=X , and the 

probability of the observation of  any reliability state 
is given by 
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where 
 
   ( ) ( ) niXEXPp iii ,,1,1 …==== .   (2) 
 
In the above formulae we have omitted time t 
assuming that in case of specific calculations it 
adopts the same value for all components of the 
random vector. 
Reliability state of the whole system depends on the 
states of all individual system’s elements. Denote by 
Ω  the set of all 2m possible states of system’s 
elements. We can divide this set into two exclusive 
subsets: the subset of all functioning states of the 
system G , and the subset of all failure states of this 

system  G  ( Ω=∪ GG ). The function 
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is called the structure function, and it describes the 
relation between reliability state of the whole system 
and reliability states of its elements. The effective 
construction of this function is the subject of 
numerous research works. Particular results may be 
found in all classical textbooks on reliability [1], [2]. 
Probability that the considered system is in the 
failure-free state depends on the vector 

( )mp,,p,p …21=p  that describes the probabilities 

of failure-free functioning of system’s elements, and 
system’s reliability structure function. It is given by 
the function called the reliability function which is 
given by the following formula 
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Below, we present the respective formulae for the 
reliability structures which are most frequently met 
in practice. 
a) In case of a system with series reliability 
structures which consists of m groups of identical 

m,,i,ni …1=  elements we have: 
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b) For the system with a parallel reliability structure 
which consists of m elements the respective formula 
is given by 
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c) In case of a series-parallel reliability system 
which consists of m connected in series groups, 
where each of these groups consists of ni connected 
in parallel identical elements, the reliability function 
is given by the formula: 
 

   ( ) ( )[ ]∏ −−=
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m

i

in
ipR

1
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d) For a parallel-series system consisting of m 
connected in parallel groups, where each of these 
groups consists of ni identical elements connected in 
series, the reliability function is given by the 
formula: 
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In formulae (5) – (8) pij denotes the probability that 
the j-th element in the i-th subsystem is in a failure-
free state. 
The systems with structures described above belong 
to a more general class of systems called coherent 
systems, or systems with monotonic structure. The 
system has monotonic structure if 
 
   ( ) ( )YX Ψ≥Ψ      (9) 
 
holds when m,,i,YX ii …1=≥ , and when  

 
   ( ) ( ) 1,0 =Ψ=Ψ 10 … ,               (10) 
 
with 0=(0,…,0) and 1=(1,…,1). For systems with a 
monotonic structure the reliability function can be 
always computed. However, for large and complex 
systems this can be a hard computational task. 
In order to compute the probability that the system is 
in the failure-free state we need to know the 
estimates of the elements of the vector p. These 
estimates can be obtained from the results of 
reliability tests. We assume that for each of system’s 
elements we have the results of independent 
reliability tests. From these tests we obtain the 

vector of estimates ( )∗∗∗∗ = mp,,p,p …21p . The 

estimators ∗
ip  are unbiased estimators of unknown 

probabilities pi only in certain particular cases. 
However, in the majority of practical cases, when 
we apply the maximum likelihood method of 
estimation, these estimators are asymptotically 
unbiased, but in practice the conditions of 
asymptotics usually do not hold due to the limited 
number of the pertinent statistical data. The 

knowledge of estimates ( )∗∗∗∗ = mp,,p,p …21p  

allows for simple estimation of the reliability R(p). 
In such a case we apply the method of substitution. 
We substitute in (4) unknown probabilities p with 

their estimates ∗p . The estimator of the reliability of 

the whole system ( )∗pR  is unbiased only in a 
particular case of systems with a series reliability 
structure and unbiased estimators of pi. In all other 

cases ( )∗pR  is biased or at best asymptotically 
unbiased. Therefore, in practical situations the 
estimates of the system’s reliability are very 
uncertain, and we need methods for the computation 
of lower bounds for its possible value. Such bounds 
may be obtained by the calculation of confidence 
intervals for R(p). 

Let us now consider a system consisting of elements 
of m different types. Suppose that the reliability of 
the element of the i-th type, i=1,…,m, is a certain 
function of a parameter iθ  whose value is unknown. 

Thus, we may assume that the reliability of the 
whole system is described by a function ( )θR  which 

depends on the vector ( )m,,, θθθθ …21=  of 

parameters describing the reliability of system’s 
elements. Moreover, we assume that the information 
from reliability tests of system’s elements is denoted 
by xi, i=1,…,m. Thus, the results of the tests are 
described by a vector ( )mx,,x,x …21=x . We have 

to note that the values of iθ  and xi only in special 

cases are represented by single numbers. In a general 
case they are represented by vectors of numbers. The 

interval ( )R,R , where ( )xRR =  and ( )xRR =  is 
the two-sided confidence interval  for the unknown 
value of  ( )θR , calculated on the confidence level  

γ,  if the following condition is fulfilled 
 
   ( )( ) γ≥≤≤ RRRP θ

θ
.               (11) 

 
In an analogical way we can define one-sided lower 
and upper confidence intervals for the reliability 
function ( )θR . In the sections which follow we  
present methods for the calculation of such 
confidence intervals. In this presentation we use 
notation given in the book by Gnedenko et al. [9]. 
 
3. Confidence intervals for system’s 
reliability in the case of discrete reliability 
data 

Let us consider the problem of reliability estimation 
when the results of reliability tests of system’s 
elements are available in a discrete form. Let us 
assume that the elements of all types are 
independently tested in exactly the same conditions 
as the work conditions of the considered system. In 
the simplest case we test samples of size Ni, 
i=1,…,m, for all m types of elements. The duration 
of all tests is the same, and is equal to t.  In this 
simplest case we assume that we know the reliability 
state of each tested element at the end of the test. 
Thus, we assume that we know the numbers of 
elements di, i=1,…,m, which have failed during the 
test. The test result is described, therefore, by pairs 
of integer numbers (di,Ni), i=1,…,m. In such a case 
we say that these reliability tests, also known as 
pass-fail tests, are performed according to a 
binomial scheme. In this simple case there exists an 
unbiased estimator of the reliability of a tested 
element given by a simple formula  
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The random number of the observed failures is thus 
described by the binomial distribution 
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Calculation of a confidence interval for the 
reliability pi is not simple. For a given confidence 
level γ one can calculate the confidence interval the 
formulae known as the Clopper-Pearson formulae. 
In the considered case of reliability estimation they 
have the form given in Gnedenko et al. [9]. The 
lower bound p  of the one-sided confidence interval 

for the reliability p is given as the solution of the 
following equation 
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The upper bound p  of the one-sided confidence 
interval for the reliability p is given as the solution 
of the equation 
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In case of d=N we have 1=p , and when d=0 we 

have 0=p . It is worth noticing that if we replace 

γ−1   in (14)-(15) with 0,5<α <1 and 0,5<β<1, 
respectively, we can use these formulae for the 
calculation of a two-sided confidence interval for the 
reliability p on the confidence level equal to  1– 
α−β.  
When the probability of a failure is low i.e. when the 
strong inequality m,,i,pq ii …111 =<<−=  holds, 

and when the number of tested elements Ni, 
i=1,…,m is large, the probability distribution of the 
number of failed elements di, i=1,…,m can be 
approximated by the Poisson distribution with the 
parameter iii Nq=Λ , and the probability mass 

function given by the formula 
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This approximation is valid if for 0→q  and 

∞→N  the condition Nq=const holds. One-sided 
confidence intervals for the parameter Λ of the 
Poisson distribution can be found by solving the 
following equations: 
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When d = 0 we have 0=Λ . For further calculation 
we can use the connection between the Poisson 
distribution and the chi-square distribution. The 
confidence intervals can be thus calculated from the 
formulae: 
 

   ( )d2
2

1 2
βχ=Λ ,               (19) 

 

   ( )22
2

1 2
1 +=Λ − dαχ ,               (20) 

 

where ( )n2
γχ  is the quantile of order  γ  of the chi-

square distribution with n degrees of freedom. 
Similarly, as in the case of the binomial distribution, 
for  0,5<α<1 and 0,5<β<1 we can use (19) – (20) for 
the calculation of the two-sided confidence interval 
for the parameter  Λ on the confidence level 1 – 
α − β.  
The Poisson distribution can be also used when the 
times to failure are described by the exponential 
distribution. When all elements failed during the test 
are replaced by new ones, and the duration of the 
test is equal to T, the observed number of failures is 
described by the Poisson distribution with the 
parameter NTλΛ = , where λ is the failure (hazard) 
rate in the exponential distribution, and N is the 
number of simultaneously tested elements. 
Confidence intervals for the parameter Λ (and for 
the failure rate λ) are in this case calculated from the 
formulae (19) – (20). 
 
4. Confidence intervals in the absence of 
observed failures 

Contemporary technical systems are built of very 
reliable elements. For such elements we usually do 
not observe failures during reliability tests. In such a 
case, the point estimate of system’s reliability is 
trivial, and is equal to 1. However, we are interested 
in the lower bound for this characteristic which may 



SSARS 2009   
Summer Safety and Reliability Seminars, July 19-25, 2009, Gdańsk-Sopot, Poland 

 

 161

be interpreted as kind of guaranteed reliability. 
Suppose, that for each of the m types of elements the 
system is built of we test Ni, i=1,…,m, elements, and 
in every case the number of observed failures is di = 
0, i=1,…,m. For such test results the upper bound for 

the confidence interval is always equal to 1=R . On 
the other hand, it is possible to calculate the lower 
bound R  of the confidence interval for the 
reliability of the considered system. In the book by 
Gnedenko et al. [9], where results of many previous 
works were summarized, it has been shown that the 
computation of this bound is equivalent to solving 
the following optimization problem 
 
   ( )p

p
RR

H0
min
∈

= ,               (21) 

 
where the set H0 contains all values of the vector 
p=(p1,p2,…,pm) such that 
 

   γ−≥∏
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1
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m
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iN
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and 
 
   mipi ,,1,10 …=≤≤ .               (23) 
 
In many interesting cases there exists a closed 
solution to this optimization problem. In case of a 
series system such solution was given by Mirnyi and 
Solovev [19]. They showed that the lower bound of 
the confidence interval for system’s reliability is 
given by a simple formula 
 
   

ii
pR min=                 (24) 

 
where 

i
p  is the lower bound of the one-sided 

confidence interval, calculated according to the 
Clopper-Pearson formula (14). It is easy to show that 
this bound can be also calculated from an equivalent 
formula  
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where 
 

   i
i
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For systems with a more complicated structure very 
strong theoretical results were obtained by Pavlov 
[24] who considered systems with a convex 
cumulative risk function H(t) that 
 

   ( ) ( )tHetR −= .                (27) 
 
He has shown that for such systems 
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ii
pRR = ,              (28) 

 
where 
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…=−= γ .              (29) 

 
The solutions of this problem for parallel, series-
parallel, parallel-series, and k-out-of-n systems have 
been presented in the book by Gnedenko et al. [9]. 
For example, in the case of a system with a parallel 
reliability structure, consisting of n different 
elements, the lower bound of the one-sided 
confidence interval for system’s reliability is given 
by: 
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where t is the solution of the following equation: 
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In a particular case, when NNN n ===⋯1  

Tyoskin and Kurskiy obtained a simple analytic 
solution (see Gnedenko et al. [9]) for this problem: 
 

   ( )[ ]nnNR 1111 γ−−−= .              (32) 
 
For systems with a more general coherent structure 
such simple solutions do not exist. However, in the 
book by Gnedenko et al. [9] two boundaries for the 
lower bound of the confidence interval have been 
proposed. Consider the set of all minimal cuts of the 
system, and assume that the minimal cut with the 
smallest number of elements consists of b elements. 
Then, consider the set of all possible minimal paths. 
For this set consider its all possible subsets 
consisting of independent, i.e. having no common 
elements, paths. Let a be the number of such paths 
in the subset with the largest number of independent 
paths. Assume additionally, that for each type of 
system elements exactly N elements have been 
tested.   The boundaries for the lower bound for the 
system’s reliability are the given by  
 

   ( )[ ] ( )[ ]bNbaNa R 11 111111 γγ −−−≤≤−−− (33) 
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In a particular case of  a = b we have 
 

  ( )[ ]bNbR 1111 γ−−−=                (34) 
 
The authors of Gnedenko et al. [9] notice, that this 
case is typical for many reliability structures such as 
lattice or radial structures which are typical for large 
network systems. 
Another very interesting method for the calculation 
of the lower bound of the confidence interval for 
system’s reliability was presented in Gnedenko et al. 
[9]. Let us assume that the same vector of 
reliabilities ( )mp,,p,p …21=p  is used for the 

calculation of reliability of two systems: the 
reliability R(p) of the considered complex system, 
and the reliability R’(p) of a simple (e.g. series) 
auxillary system. For this auxillary system we must 
know the lower bound of the respective confidence 

interval ( )p'R . In order to find the lower bound of 
the confidence interval for the reliability of the 
considered system we have to solve the following 
optimization problem: 
 
  ( )p

p
RR min=                 (35) 

  
where the m elements of the vector p must fulfill the 
following constraints  
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i
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=
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The lower bound calculated in this way fulfills all 
the requirements for a lower bound of a confidence 
interval, but the length of such interval is usually not 
the shortest possible. 
 
5.  Confidence intervals in the presence of 
observed failures 

When failures are observed during reliability tests of 
system’s elements the problem of building 
confidence intervals for the reliability of the whole 
system becomes much more complicated. 
Comprehensive information about available methods 
can be found in the fundamental book by Gnedenko 
et al. [9]. Below, we present only some basic results 
considered in this book and related literature. 
Let us assume that the considered system consists of 
elements of m different types. For each of these 
types we test a sample of Ni elements, and for each 
sample we observe m,,,di …110 =≥  failures. Let 
 
   ( )mpppRS ˆ,,ˆ,ˆ 21 …=                (37) 

be the point estimator of system’s reliability, where 
m,,i,p̂i …1=  are the estimators of the reliability of 

systems elements calculated according to (12). Now, 

denote by ( )∗∗∗∗ = md,,d,d …21d  the vector of 

numbers of observed failures. Moreover, denote by 

( )∗∗ = dSS  the observed value of the estimator of 
system’s reliability presented as the function of the 

vector ∗d . The lower bound of the confidence 
interval for the system’s reliability is now calculated 
from the formula 
 

   ( )
( )
∑ ∏ −=−














 ∗≤ =

−

∈
dd

p
SS

m

i

id
i

idiN
i

i

i

RA
pp

d

N

1
11max γ ,(38) 

  
where maximum is calculated over the set AR of 
vectors ( )mp,,p,p …21 , such that 

 
   ( ) mpRpppR im ,,11,10,,,, 21 …… =≤≤= .  (39) 
 
The sum in (38) is calculated over all possible values 
of the vector ( )md,,d,d …21=d  that fulfill the 

condition given for this sum in (38). In certain cases 
other formulation of this optimization problem is 
more suitable for computations. According to this 
formulation we denote by  ( ) ( )md,,d,dnn …21=d  a 

non-decreasing, with respect to all components, 
series of vectors. The first element of this series is 
the vector  (0,0,…,0), and then we have the vectors 
of the type (0,..,0,1,0,…,0), etc. The lower bound of 
the confidence interval for system’s reliability can 
be calculated from 
 
   ( )mpppRR ,,,min 21 …= ,              (40) 
 
where minimum is taken over the set of all values of 
the vector ( )mp,,p,p …21  such that 
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The optimization problem given by (40) – (41) was 
formulated first time by Buehler [6] who considered 
a system consisted of two elements. This was the 
first result of the calculation of the confidence 
interval for system’s reliability.  
Let us now consider the series system consisted of m 
different elements. The optimization problem is now 
the following: 
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where minimum is taken over all vectors 
( )mp,,p,p …21  such that 
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The calculation of the lower bound of the confidence 
interval for system’s reliability R  can be simplified 
when the probabilities of failures are small, i.e. when 
the inequality m,,i,pq ii …111 =<<−=  holds. In 

such a case we can assume that the number of 
failures is described by the Poisson distribution with 
the parameter m,,i,Nq ii …11 ==Λ . It has been 

shown in the book by Gnedenko et al. [9] that in this 
case we have 
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and the maximum in (45) is taken over all vectors 

( )m.,, ΛΛΛΛ …21=  such that 
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   mi ,...,1=      
  
This practical result was obtained first time by 
Bol’shev and Loginov [5] for the case of equal 
values of Ni, and, independently, by Pavlow [23] and 
Sudakov [25] for any values of these numbers. 
 
6. Approximate confidence intervals for 
system’s reliability 

Computation of exact bounds of confidence intervals 
for system’s reliability requires, with only few 
exceptions, solving difficult optimization problems. 
Therefore, its practical applicability is somewhat 
limited unless specialized software is available. For 
this reason several authors, mainly American, have 
tried to obtain approximate, but relatively easy for 
computation, solutions. Different approximate 
solutions have been proposed by such authors as 

Madansky [12], Myhre and Saunders [20], 
Easterling [7], Mann [13],[14], or Mann and Grubbs 
[15],[16]. Comprehensive review of such results can 
be found in a well known book by Mann, Shaefer, 
and Singpurwalla [17]. However, probably the most 
interesting from a practical point of view result was 
presented in one of the first textbooks on reliability 
written by Lloyd and Lipow [11]. These authors 
presented a heuristic method, attributed to Lindstrom 
and Madden, for the calculation of the approximate 
confidence interval for the system with a series 
reliability structure. This method utilizes the concept 
of so called equivalent tests. To present this method 
we consider, following the book by Gnedenko et al. 
[9], a system with a series-parallel structure which 
has the same elements in its parallel subsystems. Let 
R*

 be the estimated value of the reliability function 
for the considered system, and Ni, i=1,…,m be the 
number of tested items for the element of the i-th 

type. The equivalent number of failures ∗iD  for the 

element of this type is then calculated from the 
equation 
 

   ∗
∗
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





 − RN
DR

i

i 1,,1,1,1,,1 ……              (47) 

 
At the next stage of the computation procedure, for 

each equivalent test ( )∗
ii D,N  we calculate the lower 

bound of the confidence interval ( )∗
iii D,NP  by 

solving the equation 
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where 
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is the incomplete beta function whose values can be 
computed using available numerical procedures. The 
lower bound of the confidence interval is now 
calculated from a simple formula 
 

   ( )( )1,,1,,,1,,1min
1

……

∗

≤≤
= iii

mi
DNPRR .             (50) 

 
The Lindstrom-Madden method was proposed as an 
approximate heuristic method. However, it has been 
proved (see the book by Gnedenko et al. [9] for 
additional information) that for many simple 
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reliability structures it produces exact confidence 
intervals. 
Another method which uses the concept of 
equivalent tests, and which can be used for the 
analysis of complex systems consisted of many 
simple subsystems, was proposed by Martz and 
Duran [18]. In this method it is assumed that for 
each simple subsystem we are able to calculate the 
value of its reliability estimator Ri, and the lower 
bound for the respective confidence interval iR . 
Next, from a set of equations 
 

   i
i

i R
M

r
=−1                 (51) 

 
and 
 
   ( )iiii rMPR ,=                (52) 
 
we calculate the parameters (Mi,ri) of the equivalent 
binomial reliability tests. In further analysis the 
considered subsystem is treated as a single element 
described by the equivalent test. Note, that for the 
application of this method it is not important how we 
have found the values of Ri and iR . 
 
7. Some remarks about other methods for the 
calculation of confidence intervals for 
system’s reliability 

In the previous sections we have presented methods 
for the calculation of confidence intervals for 
system’s reliability for the case of discrete reliability 
data from tests, i.e. when the numbers of tested 
elements and the numbers of observed failures are 
known. It is a well known fact that the knowledge of 
lifetime distributions combined with the knowledge 
of observed times to failures may increase the 
accuracy of reliability estimation. Moreover, this 
knowledge may be sufficient for the prediction of 
reliability at time instants other than the times of the 
performed reliability tests. Unfortunately, even in 
the simplest case of the exponential distribution of 
lifetimes the exact and practically applicable 
solutions are known only in few cases when lifetime 
tests are performed according to the type-II 
censoring scheme (a fixed number of observed 
failures). For example, Lentner and Buehler [10] 
considered the case of a series system with only two 
elements. Their result was generalized in an 
unpublished PhD thesis by El Mawaziny [8] who 
proposed an iterative method for the calculation of 
the lower bound of the confidence interval for 
reliability of a series system consisted of m 
elements. Because of its complicated nature this 

algorithm has not been described in reliability 
textbooks. However, there exists a good 
approximation proposed by Mann and Grubbs [15], 
and in a simplified version by Mann [14]. 
Consider the case when the lifetimes are 
exponentially distributed, and reliability tests 
provide type-II censored data. For each type of 
system elements we test a sample of ni items, and 
observe times ti,j of the first r i>0, i=1,…,m failures.  
The respective value of the total time on test zi, is 
given by 
 

   ( )∑ =−+=
=
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j
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,, ,,1, …              (53) 

 
Denote by z(1) the minimal value of zi, i=1,…,m.  
Mann [14] has shown that the estimator of the 
hazard rate of the series system has approximately 
the expected value given by 
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and the variance given by 
 

   
2

)1(1
2

11

zz

rk

i i

i +∑
−

=
=

ν .               (55) 

 
To approximate the optimum lower bound for 
reliability of a series system )(tRs  at confidence 

level β , using the Wilson-Hilferty transformation, 
one calculates 
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where γy  is the quanitile from the standardized 

normal distribution. For systems with more complex 
structures an interesting approach has been proposed 
in Gnedenko et al. [9]. According to this approach 
first we have to calculate upper bounds for the 
hazard rates of system’s elements using the 
following simple formula 
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mi
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…== γχ
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where ( )r22

γχ  is the quantile of the γ order from the 

chi-square distribution with 2r degrees of freedom. 
When we insert these lower bounds into a formula 
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for the calculation of the system’s reliability 
function instead of respective hazard rates, i.e. if we 
calculate 
 
   ( )mRR λλλ ,,. 21 …= ,               (58) 
 
the obtained value usually fulfills the requirements 
for a confidence interval. Pavlov [24] has shown that 
in case of γ>0,778 this approach allows to calculate 
confidence intervals for a broad class of reliability 
structures for lifetime distributions having non-
decreasing (in time) hazard rates (i.e. for elements 
with the ageing property).  
The general methodology for the calculation of 
confidence intervals for system’s reliability was 
proposed by Belyaev [3], [4]. Other, but completely 
equivalent general method, was proposed by 
Bol’shev and Loginov [5]. Below, we present the 
main results of Belyaev.  
Suppose that we know the statistic S which can be 
used as a point estimator of system’s reliability, i.e. 

R̂S = . Moreover, we assume that this statistic is a 
function of a vector of parameters θθθθ    describing 
probability distributions of lifetimes of system’s 
elements. Additionally, we assume that the 
probability distribution of this statistic is known, i.e. 
we know 
 
   ( ) ( )tSPtF ≤=

θ
θ, .               (59) 

 
For a given value of the vector θθθθ we can now 
introduce two functions t1(θθθθ) and t2(θθθθ), such that 
 
   ( ) α=θ,1tF                 (60) 
 
and 
 
   ( ) β−= 1,2 θtF .               (61) 
 
Now, let’s denote by 
 
   ( ){ }RRAR == θθ :                (62) 
 
the set of all values of the vector θθθθ    for which the 
reliability function adopts a given value R. Next, 
introduce two functions 
 
   ( ) ( )θ

θ
11 min tRK

RA∈
=                (63) 

 
and 
 
   ( ) ( )θ

θ
22 min tRK

RA∈
= .               (64) 

 

The lower and upper bounds of the confidence 
interval on the confidence level 1−α−β for system’s 
reliability can be found by solving equations 
 

   ( ) ∗= SRK1                 (65) 
 
and 
 

   ( ) ∗= SRK2 ,                (66) 
 
where S* is the observed value of the statistic S. 
 
The described general methodology is based on the 
original methodology for the construction of 
confidence sets proposed by Neyman [22], and is 
valid for any type of reliability data, and any 
reliability structure. However, its practical 
applicability is limited only to rather simple cases. 
 
8. Approximate lower bounds for system’s 
reliability based on minimum values of the 
reliability of system’s elements 

Computation of optimal (i.e. the shortest) and exact 
confidence intervals is, with a few exceptions, a very 
difficult task. Moreover, in all published results it is 
assumed that the elements in a system are mutually 
independent. Additional problems arise from a fact 
that confidence intervals used for the description of 
test results may be conservative, as in the case of 
intervals based on the Clopper-Pearson formula.  In 
this section we present approximate bounds for 
system’s reliability which, under certain conditions, 
may replace lower bounds of confidence intervals. 
In order to investigate the robustness of the 
confidence intervals for system’s reliability against 
the departure from the assumption of independence 
of system’s elements let us introduce the notion of a 
copula. According to a famous theorem of Sklar (see 
e.g. Nelsen [21]) any two-dimensional probability 
distribution function H(x,y) with marginals F(x) and 
G(y) is represented using a function C, called a 
copula, in the following way: 
 
   ( ) ( ) ( )( )yGxFCyxH ,, =               (67) 
 
for all Ryx ∈, . Conversely, for any distribution 
functions F and G and any copula C, the function H 
defined by (67) is a two-dimensional distribution 
function with marginals F and G. Moreover, if F and 
G are continuous, then the copula C is unique. In our 
investigation we have considered three types of 
copulas: 
a) Clayton copula, defined as 
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   ( ) ( )[ ] 0,1,
1

>−+=
−−− θθθθ GxFyxH              (68) 

 
b) Gumbel copula, defined as 
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c) Fairlie-Gumbel-Morgenstern (FGM) copula 

defined as 
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              (70) 

 
The Clayton and Gumbel copulas can be used for 
modeling a positive stochastic dependence. The 
FGM copula can be used for modeling both negative 
(θ<1) and positive (θ>1) dependence. The Clayton 
copula is especially interesting in reliability 
applications as it describes stronger dependence for 
smaller lifetimes than for larger ones. If this type of 
dependence exists the reliability of a series system 
with dependent elements is greater than in the case 
of independence. On the other hand, for a parallel 
system the reliability of a system with dependent 
elements is smaller. 
In the majority practical cases the reliability of 
tested elements is high, and even for moderate 
sample sizes the number of observed failures is 
small. This suggests utilization of the result obtained 
for the case of zero-failure tests for the calculation of 
the lower bounds for reliability of a series system 
given by the expression (24). To analyze the 
properties of this approximation let us consider a 
two-element series system whose elements are 
equally reliable. We also assume that the sample 
sizes for both elements are the same. On Figure 1 we 
present the comparison of the values of our simple 
approximate bound with the bounds calculated for 
this system using a substitution method. For 
obtaining the presented results we performed a 
Monte Carlo simulation experiments, and in each of 
them we generated 500 000 test cases, Our 
approximate bound, plotted against the expected 
number of observed  failures in a sample (for a 
probability of failure equal to 0,01), is represented 
by a continuous upper curve. The middle curve 
represents the bound calculated by the insertion into 
(5) the respective lower bound of the confidence 
intervals for the reliability of elements, calculated 
for the same confidence level (γ=0,9).The lower 

curve is a similar to the previous one, but calculated 
for the confidence level equal to γ , as it is 
suggested in statistical literature. 
For these bounds we have estimated the coverage 
probability of the considered confidence intervals. 
The results of the comparison are presented on 
Figure 2 for our approximate bound, and the bound 
represented by the middle curve on Figure 1. 

As we can see, our simple bound fulfills 
requirements for a confidence interval not only for 
zero-failure reliability tests, but for all tests with the 
expected number of failures not greater than 1,95. 
The classical and much wider confidence intervals 
have the probability of coverage close to 1, i.e. much 
greater than the designed value of 0,9.  
 

 
Figure 1. Lower bounds for a series system 
 

 

Figure 2. Coverage probabilities for a series system 
in case of independence 

Now, let us consider the case when the elements of 
the system are dependent. On Figure 3 we show the 
coverage probability when this dependence is 
described by the Clayton copula with dependence 
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parameter θ=2, and the Gumbel copula, with 
dependence parameter θ=2. For this value of the 
parameter the Kendall measure of dependence τ for 
both copulas is equal to 0,5. It means that the 
dependence is positive and fairly strong. The 
coverage probability in the case of the Clayton 
copula (solid line) is greater than the designed value 
for tests with the expected value of observed failures 
greater than 5. However, in the case of the 
dependence described by the Gumbel copula 
(dashed line) this feature is guaranteed only for this 
value not greater than 2. It shows, how the type of 
dependence influences the results despite the fact 
that the popular measure of dependence, such as 
Kendall τ in both cases gives exactly  the same 
value. Similar results have been also obtained for the 
FGM copula which can be used for modeling 
weaker dependencies. 
 

 

Figure 3. Coverage probabilities for a series system 
in case of dependence 
 
Now, let us consider the case of the system with 
elements connected in parallel. For such systems a 
simple for computation bound which is similar to 
that for a series system does not exist. Instead we 
propose the following approximation 
    
   

i
iqR min1−=  ,              (71) 

where iq   is the upper bound of the confidence 

interval for the probability of failure. The lower 
bound calculated according to (71) is always smaller 
than the bound obtained by substitution of the 
probabilities of failures qi with their respective upper 
bounds iq . Thus, the coverage probability in case of 

independent elements of the system, calculated 
according to (71), is always greater than the 
respective confidence level. It can be seen at Figure 
4, where this probability is always equal to 1. (Note 
that the coverage probability in case of the bound 
obtained by substitution is also much greater than 
the confidence level which is equal to 0,9). 

The situation changes dramatically when the 
elements of the system are positively dependent, e.g. 
when their dependence is described either by the 
Clayton copula or by the Gumbel copula. On Figure 
5 we present the estimated coverage probabilities in 
such cases when the confidence intervals are 
calculated using the substitution method. 
 

 

Figure 4. Coverage probabilities for a parallel 
system in case of independence 
 

 
Figure 5. Coverage probabilities for a parallel 
system in case of dependence 
 
The coverage probabilities (the left-most curve for 
the Clayton copula, and the curve next to it for the 
Gumbel copula) show dramatically that the 
confidence intervals obtained by substitution under 
the assumption of independence are too narrow. On 
the other hand, the interval calculated according to 
(71) has the coverage probability (depicted by a 
dashed curve for the Clayton copula, and equal to 
one for the Gumbel copula) greater than the 
confidence level.  
 
9. Conclusion 

Many prominent authors, mainly from USA and the 
Soviet Union, contributed to the problem of 
computing the lower confidence bounds for system’s 
reliability using the data from tests of separate 
elements or subsystems. The proposed exact bounds 
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are usually difficult to compute. Good 
approximations exist, but they are usually obtained 
under the assumption that failures of all elements or 
subsystems are observed during the tests. In the 
paper we have shown using Monte Carlo simulation 
that in case when elements working together in a 
system are dependent these bounds are inaccurate or 
even useless, as it is the case of parallel (redundant) 
systems. In the paper, we have proposed very simple 
bounds characterized by satisfactory performance, at 
least for highly reliable system elements, which are 
robust against the presence of positive dependence 
of the elements of a system. The results of 
simulation experiments indicate that the proposed 
approach is also applicable for series-parallel and 
parallel-series systems defined by (7) and (8), 
respectively. However, the experiments also show 
that our approximations have worse properties for 
systems with larger number of elements, unless 
these elements are very reliable. 
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