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Abstract

The paper is concerned with the construction ofelolounds for the reliability of a system whenisteal

data comes from independent tests of its elem&hes.overview of results known from literature ardaoned
under the assumption that elements in a systenndependent is given. It has been demonstratedjusin
Monte Carlo experiment that in the case when tledsments are dependent and when their dependence is
described by Clayton and Gumbel copulas these @emfie bounds are not satisfactory. New simple b®und
have been proposed which in some practical casesbw®iter properties than the classical ones.

1. Introduction. methods for the prediction of reliability using

Reliability indices of complex systems can be availa_lble statistical data. In this paper we cosmrsid
. . the simplest one, when we can utilize the results o

estimated from the results of lifetime tests. Wiaen reliability tests of system’s elements performed in

system s treated as one entity we can OIIStIr]gwsrﬂ)resumably the same conditions as the conditions of
two different types of reliability tests. In therdi work of the designed complex system

ong, \;\{e obsirv? tcr_:]onsec]lcjt_l?/ed faI|Lil’eS .Of a SyStterInResearch studies on statistical methods aimedeat th
and a %r e?c 0 h €m a faile ;ys ertr_1 IS corg\ptle € estimation of system’s reliability using the resudf
renewed. In such case, random tmes eweerf'eliability tests of its elements were initiated

consecutive failures are descrl_bed .by 'ndepen.qe%dependently in the 1950s in the United States and
random variables having and identical probablllty,[he Soviet Union, where they were performed by
d'SFr'bUt'onS' I .th's assumption is true, we can prominent mathematicians and statisticians. Some
estimate a required reliability characteristic gsin strong mathematical results were obtained, ancethes

sample of observed lifetimes. In the second case, Wiesults can be used for both point and interval

have to observe several identical systems working i estimation of system’s reliability using the data

the same conQitions. Times to fi'rst failures ofsthe obtained for its elements or subsystems. In thipa
systems constitute a sample Wh'(.:h may be .“S‘?‘?' fo\5‘\/e will focus our attention on the interval
the es“?“"’.‘“"” of the considered reliability estimation. The reason for the importance of the
characteristic. In both cases, however, we need Wesults of this type stems from practice. Usually w

haf\;.e. elttlhelr sufﬂmegtly flonbg tlms Oft test Borthcan use scarce reliability data, and thus the obthai
sutticiently 1argeé number of observed Systems. Bothy, ;. astimators are not very precise. Therefore, w

:E_ese re&wéemfer:rt]s arel_sil_(la!:)m mtgt mt_prac_tlce.,TPu eed to know some lower bounds for the predicted
is method of the reliability estimation is rarely reliability characteristics.

used in practice despite the fact that from astied Preliminary analysis of the theoretical resultsvehio

point_of view the r_equired estimators are obtaiimed undoubtedly that even in the cases of simple system
the simplest possible way. Moreover, in such a CaS&xact analytical methods require utilization of

we do not profit fm”? the information about the complex mathematical tools such as nonlinear
structure of the considered system, and from themathematical programming. On the other hand

knowledge of times to failure of its elements. interesting approximate results, obtained mainly by

In [:;)rlactl.ci we tare frz&;qu?ntlylfag_(i? W':]h a ctilff'&rtc'an American researchers, can be used in practice when
problem: how 1o evaluate reliabiiity characteristic sufficiently large number of failures have been

of a system on its design stage. There exist MaNYpserved. For this reasons already in the 1980s the
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reliability theoreticians lost their interest inrtler Lp( ) {1 X0OG @)

research in this area. However, the problem ig stal =
. ) o . 0 XOG
interesting for practitioners who need approximate,
or even heuristic, methods which may be used for

the prediction of reliability using existing staiisl is called thestructure functionand it describes the
data. relation between reliability state of the wholeteys

The purpose of this paper is two-fold. In first six and reliability states of its elements. The effegti

sections we give a short overview of different construction of this function is the subject of

methods for the construction of confidence intesval NUmerous research works. Particular results may be

for the reliability of systems. In all these metagd ~ found in all classical textbooks on reliability [12].

has been assumed that the elements of a system dr&obability that the considered system is in the

independent. In the last section of the paper weailure-free  state  depends on the vector

present new bounds which in certain practical case$ = (pl Pz ’pm) that describes the probabilities

are robust to deviations from the assumption ofof failure-free functioning of system’s elementada

independence. system'’s reliability structure function. It is givéoy
the function called the reliability function whidh

2. General methodology for the evaluation of  given by the following formula

system'’s reliability

Evaluation of reliability of complex systems became R(p) B P(X DG) - E[HJ(X)] -

the subject of intensive theoretical investigation Z‘P(X)H pXi(L-p f )
the beginning of 1960s. Fundamental results were xtc = ‘i=1 '

summarized in the famous book by Barlow and

Proschan [1]. In the mathematical models considere®elow, we present the respective formulae for the
in [1] it is assumed that both the system as a &hol reliability structures which are most frequentlytme
and system’'s elements at any time instft are  in practice.

either in the state of functioning (or failure-free a) In case of a system with series reliability
state), when the random varial{&) describing the structures which consists ofi groups of identical
reliability state adopts the value 1, or in thatestof n,i=1,..,m elements we have:

failure, when this random variable adopts the value

0. When the considered system consists nof "

elements, then its reliability state is describgahe Rp)=r1p" . (5)

random vector X = (X1 ,Xz,...Xm), and the
probability of the observation of any reliabiléjate  p) For the system with a parallel reliability sture

is given by which consists o elements the respective formula
is given by
P(X)=11 P =R )7, (1) i i
) Rp)=1-110-p)=1-Ma (6)
where

c) In case of a series-parallel reliability system
p =P(X; =1)=E(X;),i=1...,n. (2)  which consists ofm connected in series groups,
where each of these groups consists; afonnected
In the above formulae we have omitted tirhe in parallel identical elements, the reliability fiion
assuming that in case of specific calculations itis given by the formula:
adopts the same value for all components of the
random vector. _m n-]
Reliability state of the whole system depends @n th R(p) = Dl[l_(l_ p )" | ()
states of all individual system’s elements. Deripte
Q the set of all 2 possible states of system’s d) For a parallel-series system consisting rof
elements. We can divide this set into two exclusiveconnected in parallel groups, where each of these
subsets: the subset of all functioning states ef th groups consists af, identical elements connected in
systemG, and the subset of all failure states of thisseries, the reliability function is given by the

system G (GG = Q). The function formula:
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m n Let us now consider a system consisting of elements
R(p) =1‘i|:|1 1- [1Pi |- (8)  of m different types. Suppose that the reliability of
. the element of thé-th type,i=1,...m, is a certain

In formulae (5) — (8)p; denotes the probability that function of a parametef] whose value _'S ghknown.
thej-th element in théth subsystem is in a failure- Thus, we may assume that the reliability of the
free state. whole system is described by a functiR(ﬂ) which
The systems with structures described above belonaepends on the vectorf = (51,52,.__ 6 ) of

to a more general class of systems called coherent o

systems, or systems with monotonic structure. Theolarame:er?w describing the re“atbh'“iyth()f. sfysten;_s
system has monotonic structure if elements. Moreover, we assume that the information

from reliability tests of system’s elements is diedo

kIJ(X)z ‘P(Y) ) by xi,_ i=1,...m. Thus, the results of the tests are
described by a vectox = ()(1x2 xm) We have
holds whenX; 2Y,,i =1,...,m, and when to note that the values @& andx; only in special
cases are represented by single numbers. In aajener
qJ(O) -0 ...lP(l) -1 (10) case they are represented by vectors of numbees. Th

interval (RR), where R=R(x) and R = R(x) is
with 0=(0,...,0) andl=(1,...,1). For systems with a the two-sided confidence intervebr the unknown
monotonic structure the reliability function can be value of R(ﬂ), calculated on the confidence level
always cor_nputed. However, for Iarge and complexM if the following condition is fulfilled
systems this can be a hard computational task.
In order to compute the probability that the system
in the failure-free state we need to know the
estimates of the elements of the vecptor These ) ) .
estimates can be obtained from the results of &n analogical way we can define one-sided lower
reliability tests. We assume that for each of sy&e and upper confidence intervals for the reliability
elements we have the results d]ﬁdependent function R(B) In the sections which follow we
reliability tests. From these tests we obtain thepresent methods for the calculation of such
vector of estimates pD:(pE,pE,...,pE)- The confidence intervals. In this presentation we use

notation given in the book by Gnederddoal. [9].

P,(R<R()<R)zy. (11)

estimators p” are unbiased estimators of unknown

probabilities p; only in certain particular cases. 3. Confidence intervals for system’s

However, in the majority of practical cases, whenreliability in the case of discrete reliability

we apply the maximum likelihood method of ggig

estimation, these estimators are asymptotically ) o o
unbiased, but in practice the conditions of Let us consider the problem of reliability estiroati
asymptotics usually do not hold due to the limitedWhen the results of reliability tests of system’s
assume that the elements of all types are

: O— o O O
knowledge ~of  estimates p- = (pl Pose. ,pm) independently tested in exactly the same conditions

allows for simple estimation of the reliabili(p). s the work conditions of the considered system. In
In SUCh a case we apply the methOd Of Substitutionthe Simplest case we test Samples Of Q}\xe
We substitute in (4) unknown probabilitigswith  j=1 . m, for all m types of elements. The duration

their estimate". The estimator of the reliability of of all tests is the same, and is equat.toln this
simplest case we assume that we know the reliabilit

: : _ ., .. State of each tested element at the end of the test
particular case of systems with a series relighbilit Thus. we assume that we know the numbers of

structure and unbiased estimatorsppfin all other elementsd,, i=1,...m, which have failed during the

cases R(DD) is biased or at best asymptotically test. The test result is described, therefore, diysp
unbiased. Therefore, in practical situations theof integer numbersd(,N), i=1,...m. In such a case
estimates of the system’s reliability are verywe say that these reliability tests, also known as
uncertain, and we need methods for the computatiopass-fail tests, are performed according to a
of lower bounds for its possible value. Such boundshinomial schemeln this simple case there exists an
may be obtained by the calculation of confidenceunbiased estimator of the reliability of a tested
intervals forR(p). element given by a simple formula

the whole systemR(pD) is unbiased only in a
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This approximation is valid if forq - O and
N - oo the conditionNg=const holds. One-sided
confidence intervals for the parametdr of the
The random number of the observed failures is thu?oisson distribution can be found by solving the

:1—%,i:],...,m (12)

described by the binomial distribution following equations:
N; =YY
Pla, :diD):(d J(l p )% Pl i =1, m(13) ehrm=1-h, (17)
i i=0
Calculation of a confidence interval for the ~d A
ey =a (18)

reliability p; is not simple. For a given confidence
level yone can calculate the confidence interval the
formulae known as the Clopper-Pearson formulae

In the considered case of reliability estimatiopyth Whend = 0 we have/l =0. For further calculation

have the form given in Gnedenla al. [9]. The we can use the conne_ction betwger_l th_e Poisson
. i _ distribution and the chi-square distribution. The

lower boundp of the one-sided confidence interval .,nfijence intervals can be thus calculated froen th

for the reliability p is given as the solution of the formulae:

following equation

[EEY

A== x%(2d), (19)
d( N _ = 27k
i SO (14)
_ | | R="x2,(2d+2), (20)
The upper boundp of the one-sided confidence 2
interval for the reliabilityp is given as the solution
of the equation where )(ﬁ(n) is the quantile of ordery of the chi-
square distribution withn degrees of freedom.
N-d(N)_, —\N-k Similarly, as in the case of the binomial distribag
1- =1- . 1 i
kz::0 ( kjp ( p) 4 (15) for 0,5<a<1 and 0,5¢%<1 we can usé19) — (20) for

the calculation of the two-sided confidence intérva
In case ofd=N we have p=1, and whend=0 we for the parameter /1 on the confidence level 1 —

a-pB

The Poisson distribution can be also used when the
1-y in (14)-(15)with 0,5<a<1 and 0,5¢%1, times to failure are described by the exponential
respect|ve|y’ we can use these formulae for théjlstrlbutlon When all elements failed durlng testt

calculation of a two-sided confidence intervaltioe ~ are replaced by new ones, and the duration of the
re||ab|||ty p on the confidence level equa| to 1- test is equal td- the observed number of failures is

a- described by the Poisson distribution with the
When the probability of a failure is low i.e. whtne ~ parameter/l = ANT, whereA is the failure (hazard)
strong inequalityq, =1- p, <<1,i = m holds. rate in the exponential distribution, amd is the

| | ’ 1

and when the number of tested elemens number of simultaneously tested elements.
i=1,...mis large, the probability distribution of the Confidence intervals for the parametdr(and for

number of failed elementst. i=1,...m can be the failure ratel) are in this case calculated from the

approximated by the Poisson distribution with theformulae (19) - (20).
parameter /A =g N,, and the probability mass

have p = 0. It is worth noticing that if we replace

4. Confidence intervals in the absence of

function given by the formula observed failures
o- Contemporary technical systems are built of very
p(d = d.D):A_ie-/\i i=1...m (16) reliable elements. For such elements we usually do
B i not observe failures during reliability tests. lrck a

case, the point estimate of system’s reliability is
trivial, and is equal to 1. However, we are integds
in the lower bound for this characteristic whichyma
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be interpreted as kind of guaranteed reliability. R(t)= e Hl) (27)
Suppose, that for each of thretypes of elements the
system is built of we ted;, i=1,... m, elements, and

; ; . He has shown that for such systems
in every case the number of observed failures #s Y

0, |=1,....,m. For.such te§t results the upBe_r bound for R=min R(J,... 1p 1. ,1)’ (28)
the confidence interval is always equalRo=1. On i =
the other hand, it is possible to calculate theelow

where

bound R of the confidence interval for the
reliability of the considered system. In the bogk b ,
Gnedenkeet al. [9], where results of many previous P, = @-py)™Ni=1...,m. (29)
works were summarized, it has been shown that the

computation of this bound is equivalent to solving The solutions of this problem for parallel, series-

the following optimization problem parallel, parallel-series, ardout-of-n systems have
_ been presented in the book by Gnedeakal. [9].
R= min R(p). (21)  For example, in the case of a system with a paralle

reliability structure, consisting ofn different
elements, the lower bound of the one-sided

where the seH, contains all values of the vector . . \ o T
confidence interval for system'’s reliability is giv

p=(Pw,Pz, ...,Aw) such that

by:
et 21-y (22) n ot
L U R=1- , 30
= - jl_=|1t + Nj (30)
and
wheret is the solution of the following equation:
O<p;<li=1...,m. (23)
n t _
In many interesting cases there exists a closedlzlej In[“ﬁ} ==In(L-y) . (31)
J

solution to this optimization problem. In case of a
series system such solution was given by Mirnyi and
Solovev [19]. They showed that the lower bound ofIn @ particular case, whenN; =---=N =N
the confidence interval for system’s reliability is Tyoskin and Kurskiy obtained a simple analytic
given by a simple formula solution (see Gnedenla al. [9]) for this problem:

R=minp, @) re1-p-a-ppnf. 2

where p is the lower bound of the one-sided For systems with a more general coherent structure
N such simple solutions do not exist. However, in the
book by Gnedenket al. [9] two boundaries for the
lower bound of the confidence interval have been
proposed. Consider the set of all minimal cutshef t

confidence interval, calculated according to the
Clopper-Pearson formula (14). It is easy to shaat th
this bound can be also calculated from an equivalen

formula system, and assume that the minimal cut with the
. smallest number of elements consistd @lements.
R= (1—y)]/N , (25)  Then, consider the set of all possible minimal path
For this set consider its all possible subsets
where consisting of independent, i.e. having no common
elements, paths. Let be the number of such paths
N"=minN. . (26) in the subset with the largest number of indepenhden
1

paths. Assume additionally, that for each type of
system elements exactlil elements have been

For systems with a more complicated structure verytested. The boundaries for the lower bound fer th
strong theoretical results were obtained by Pavlowystem’s reliability are the given by

[24] who considered systems with a convex

cumulative risk function(t) that 1- [1_ (1_ y)]/'\‘a]a <R<1- [1_ (1— y)]/Nb]b (33)
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In a particular case of = b we have be the point estimator of system’s reliability, wine
bi ,1 =1,...,m are the estimators of the reliability of
R=1- [1— (1_ y)l/Nb]b (34) systems elements calculated according to (12). Now,

denote by d"= (dlm,df,... d,i) the vector of
The authors of Gnedenlat al. [9] notice, that this  ympers of observed failures. Moreover, denote by

case is typical for many reliability structures lswas o= S(dm) the observed value of the estimator of

lattice or radial structures which are typical frge T i
network systems. system’s reliability presented as the function lud t

Another very interesting method for the calculation vector d”. The lower bound of the confidence
of the lower bound of the confidence interval for interval for the system’s reliability is now caletgd
system'’s reliability was presented in Gnedeekal.  from the formula

[9]. Let us assume that the same vector of

reliabilities p:(pl,pz,...,pm) is used for the max m(Ni ) N (1_ )di —1-y.(38)
calculation of reliability of two systems: the  poAR S(d)ss(dtl)iljl d, P B v
reliability R(p) of the considered complex system,

and the reliabilityR(p) of a simple (e.g. series) _ .

auxillary system. For this auxillary system we mustWhere maximum is calculated over the #et of
know the lower bound of the respective confidencevectors(p,,p,....,Py), such that

interval B(p) In order to find the lower bound of
the confidence interval for the reliability of the R(Py, Py P) =R O< P <11=1...,m. (39)
considered system we have to solve the following

optimization problem: The sum in (38) is calculated over all possiblaigal
of the vectord = (dl d,,... ,dm) that fulfill the
R= mpin R(p) (35)  condition given for this sum in (38). In certairsea

other formulation of this optimization problem is

where them elements of the vectqr must fulfill the more suitable for computations. According to this
following constraints formulation we denote byn(d)=n(d, d,,... d,) a
non-decreasing, with respect to all components,
series of vectors. The first element of this seiges
the vector (0,0,...,0), and then we have the vectors
of the type (0,..,0,1,0,...,0), etc. The lower bowfd

The lower bound calculated in this way fulfills all the confidence interval for system’s reliabilitynca
the requirements for a lower bound of a confidenceP€ calculated from
interval, but the length of such interval is usyaibt

p=R,0<p <Li=1..m. (36)

s

1
L

the shortest possible. R=minR(py, p..... Pr). (40)

5. Confidence intervals in the presence of where minimum is taken over the set of all values o
observed failures the vector(p, ,p, ..., p,,) such that

When failures are observed during reliability tesfts

system’'s elements the problem of building m (N ) N g &

confidence intervals for the reliability of the wao X Oig |p (1-p)" 21-y, (a1)
system becomes much more complicated. nle)en(¢7) .

Comprehensive information about available methods O<p <li=1..m

can be found in the fundamental book by Gnedenko

et al.[9]. Below, we present only some basic resultsThe optimization problem given by (40) — (41) was
considered in this book and related literature. formulated first time by Buehler [6] who considered
Let us assume that the considered system consists a system consisted of two elements. This was the
elements ofm different types. For each of these first result of the calculation of the confidence
types we test a sample Nf elements, and for each interval for system’s reliability.

sample we observd, 20,1=1,...,m failures. Let Let us now consider the series system consisted of
different elements. The optimization problem is now
S= R(blf [P f)m) (37) the following:
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R=mi m 42 Madansky [12], Myhre and Saunders [20],
R=minf]p;, (42) Easterling [7], Mann [13],[14], or Mann and Grubbs
[15],[16]. Comprehensive review of such results can
where minimum is taken over all vectors be found in a well known book by Mann, Shaefer,
(p1 p D ) such that and Singpurwalla [17]. However, probably the most
T Em interesting from a practical point of view resulasv
presented in one of the first textbooks on religbil
H(Nijnm_di @-p)i21-y, (43) written by Lloyd and Lipow [11]. These authors
Rd)=R(d")'! d presented a heuristic method, attributed to Limabstr
- and Madden, for the calculation of the approximate
O<p <1i=1...m i . . )
confidence interval for the system with a series

. , reliability structure. This method utilizes the cept
The calculation of the lower bound of the confidenc of so called equivalent tests. To present this outh

interval for system's reliabiliyR can be simplified  \ye consider, following the book by Gnedereal.

when the probabilities of failures are small, when 9], a system with a series-parallel structure \whic
the inequalityg, =1- p <<1,i =1,...,m holds. In  has the same elements in its parallel subsysteats. L
such a case we can assume that the number & be the estimated value of the reliability function

failures is described by the Poisson distributiothw ~ for the considered system, ahff i=1,...m be the
the parameter/l =gN,,i =1,...,m. It has been number of tested items for the element of ihk

. . )
shown in the book by Gnedenkbal.[9] that in this ~ YPE- The equivalent number of failuréy for the

IN

case we have element of this type is then calculated from the
equation
EEC (44) ;
R(l...;l,l—D%_ J,...,lj:RD 47)
where i
_ m A, At the next stage of the computation procedure, for
f=ma éﬁl ’ (45 each equivalent tes(Ni ,DF) we calculate the lower

bound of the confidence intervaP, (Ni,DF) by
and the maximum in (45) is taken over all vectorssplving the equation

A=(A,A,,...A,) such that

B,(N, -DP.D; +1)=1-y, (48)
m . N
ne™ [—'le—y,/li >0, (46)
R(d)zR(dD =1 d;! where
i=1...m p
[ X1 -x)"dx
This practical result was obtained first time by B,(ab)=2 (49)
Bol'shev and Loginov [5] for the case of equal (x5 x)""dx
0

values ofN;, and, independently, by Paviow [23] and
Sudakov [25] for any values of these numbers.
is the incomplete beta function whose values can be
6. Approximate confidence intervals for computed using available numerical procedures. The
system’s reliability lower bound of the confidence interval is now
calculated from a simple formula
Computation of exact bounds of confidence intervals
for system’s re_IiabiIi.ty_ require_s,_ Wi_th only few R = min R(l-..lEi(Ni,DiD)l...l). (50)
exceptions, solving difficult optimization problems I<i<m
Therefore, its practical applicability is somewhat
limited unless specialized software is availabler F The Lindstrom-Madden method was proposed as an
this reason several authors, mainly American, haveapproximate heuristic method. However, it has been
tried to obtain approximate, but relatively easy fo proved (see the book by Gneden&b al. [9] for
computation, solutions. Different approximate additional information) that for many simple
solutions have been proposed by such authors as
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reliability structures it produces exact confidencealgorithm has not been described in reliability
intervals. textbooks. However, there exists a good
Another method which uses the concept ofapproximation proposed by Mann and Grubbs [15],
equivalent tests, and which can be used for theand in a simplified version by Mann [14].

analysis of complex systems consisted of manyConsider the case when the lifetimes are
simple subsystems, was proposed by Martz angxponentially distributed, and reliability tests
Duran [18]. In this method it is assumed that for provide type-ll censored data. For each type of
each simple subsystem we are able to calculate theystem elements we test a samplenoitems, and
value of its reliability estimatoR, and the lower observe times;; of the firstr;>0, i=1,... m failures.

bound for the respective confidence intenid].  The respective value of the total time on tesis

Next, from a set of equations given by
] i
and Denote byz,y the minimal value ofz, i=1,...m.
Mann [14] has shown that the estimator of the
R =P (Mi ’ri) (52) hazard rate of the series system has approximately

the expected value given by

we calculate the parameteid; ;) of the equivalent kr -1 1

binomial reliability tests. In further analysis the u=>-—"—-+—, (54)
considered subsystem is treated as a single element = 4 Zq)

described by the equivalent test. Note, that fer th

application of this method it is not important hee  and the variance given by

have found the values 8f and R; .

k-1 1
V= Z 5 +—2 . (55)
7. Some remarks about other methods for the =l Z, Z(
calculation of confidence intervals for
system'’s reliability To approximate the optimum lower bound for

In the previous sections we have presented method€liability of a series systeni(t) at confidence
for the calculation of confidence intervals for level B, using the Wilson-Hilferty transformation,
system’s reliability for the case of discrete relidy =~ One calculates

data from tests, i.e. when the numbers of tested

elements and the numbers of observed failures are YZ 3
known. It is a well known fact that the knowledde o R, (t)=exp ~t - Y 4 y,V ,
lifetime distributions combined with the knowledge —s 9u? 3u

of observed times to failures may increase the

accuracy of reliability estimation. Moreover, this
knowledge may be sufficient for the prediction of
reliability at time instants other than the timéghe S _
performed reliability tests. Unfortunately, even in normal distribution. For systems with more complex
the simplest case of the exponential distributién o Structures an interesting approach has been prdpose
lifetimes the exact and practically applicable in Gnedenkoet al [9]. According to this approach
solutions are known only in few cases when lifetimefirst we have to calculate upper bounds for the
tests are performed according to the type-llhazard rates of system's elements using the
censoring scheme (a fixed number of observedollowing simple formula

failures). For example, Lentner and Buehler [10]

considered the case of a series system with ordy tw — _ x2(2r;)
elements. Their result was generalized in an “i =" 5g
unpublished PhD thesis by EI Mawaziny [8] who '

proposed an iterative method for the calculation of ) . .

the lower bound of the confidence interval for Where)(y(Zr) is the quantile of thgrorder from the
reliability of a series system consisted of  chi-square distribution withr2degrees of freedom.
elements. Because of its complicated nature thisvhen we insert these lower bounds into a formula

(56)

where y, is the quanitile from the standardized

Ji=1...,m, (57)
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for the calculation of the system’s reliability The lower and upper bounds of the confidence
function instead of respective hazard rates, fiaei interval on the confidence level&— for system’s
calculate reliability can be found by solving equations

R=R,A,,.. A ), (58) K, (R)=¢" (65)

the obtained value usually fulfills the requirengent and

for a confidence interval. Pavlov [24] has showat th

in case of)»0,778 this approach allows to calculate Kz(§)= s, (66)
confidence intervals for a broad class of reliaili
structures for lifetime distributions having non-
decreasing (in time) hazard rates (i.e. for elesent
with the ageing property).

The general methodology for the calculation of

confidence intervals for system’s reliability was confidence sets proposed by Neyman [22], and is
proposed by Belyaev [3], [4]. Other, but Completelyvalid for any type of reliability data, and any

equivalent general method, was proposed onreliability structure. However, its practical

Bol'shev and Loginov [5]. Below, we present the T, ,
. applicability is limited only to rather simple case
main results of Belyaev.

Suppose that we know the statisBavhich can be
used as a point estimator of system’s reliability,

S=R. Moreover, we assume that this statistic is a
function of a vector of parameter@describing
probability distributions of lifetimes of system’s Computation of optimal (i.e. the shortest) and éxac
elements. Additionally, we assume that the confidence intervals is, with a few exceptionseayv
probability distribution of this statistis known i.e.  difficult task. Moreover, in all published resulitss

whereS is the observed value of the statiSic

The described general methodology is based on the
original methodology for the construction of

8. Approximate lower bounds for system’s
reliability based on minimum values of the
reliability of system’s elements

we know assumed that the elements in a system are mutually
independent. Additional problems arise from a fact
F(t,e): P, (Sgt)_ (59) that confidence intervals used for the descriptibn

test results may be conservative, as in the case of
intervals based on the Clopper-Pearson formula. In
this section we present approximate bounds for
system’s reliability which, under certain conditspn
may replace lower bounds of confidence intervals.

For a given value of the vect® we can now
introduce two functiong(8) andt,(0), such that

F(tl’e) =a (60)  1n “order to investigate the robustness of the
confidence intervals for system’s reliability aggtin
and the departure from the assumption of independence
of system’s elements let us introduce the notioa of
F(t,,0)=1-43. (61)  copula According to a famous theorem of Sklar (see
e.g. Nelsen [21]) any two-dimensional probability
Now, let’s denote by distribution functionH(x,y) with marginalsF(x) and
G(y) is represented using a functidd, called a
A, ={0:R(6)=R} (62)  copula,in the following way:
the set of all values of the vect®rfor which the H(x,y) = C(F(x).G(y) (67)
reliability function adopts a given valug Next,
introduce two functions for all x,yJR. Conversely, for any distribution
functionsF andG and any copul&, the functionH
K,(R) = mint,(6) (63)  defined by (67) is a two-dimensional distribution
00AR function with marginal§ andG. Moreover, ifF and
G are continuous, then the cop@as unique. In our
and investigation we have considered three types of
_ copulas:
K,(R) = {)Q,'Qtz(e)- (64)  a) Clayton copula, defined as
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curve is a similar to the previous one, but calmda

for the confidence level equal tQ/;_/, as it is

i suggested in statistical literature.

b) Gumbel copula, defined as For these bounds we have estimated the coverage
probability of the considered confidence intervals.
The results of the comparison are presented on

(xy)
B 6 Figure 2 for our approximate bound, and the bound
= ex;{— [(_ InF(x))”+(=In G(y))e]f ] (69)  represented by the middle curvefigure 1

>0 As we can see, our simple bound fulfills
requirements for a confidence interval not only for
c) Fairlie-Gumbel-Morgenstern ~ (FGM)  copula zero-failure reliability tests, but for all teststiwthe

H (x, y)=[F"€(x)+G"€ —1]%,9>o (68)

defined as expected number of failures not greater than 1,95.
The classical and much wider confidence intervals
H(x,y) have the probability of coverage close to 1, i.acm
— F(x)G(y)(l + 9(1_ F(x))(l— G(y))) (70) greater than the designed value of 0,9.
-1<6<1
The Clayton and Gumbel copulas can be used for
modeling a positive stochastic dependence. The T

FGM copula can be used for modeling both negative [
(6<1) and positive @1) dependence. The Clayton ™17
copula is especially interesting in reliability .
applications as it describes stronger dependence fo *
smaller lifetimes than for larger ones. If this e¢ypf i
dependence exists the reliability of a series syste '
with dependent elements is greater than in the case |
of independence. On the other hand, for a parallel ==
system the reliability of a system with dependent
elementsis smaller. o b
In the majority practical cases the reliability of — &< P IAARIERASFIPIISAIIALS
tested elements is high, and even for moderate .
sample sizes the number of observed failures js 'gure 1 Lower bounds for a series system
small. This suggests utilization of the result otdd
for the case of zero-failure tests for the calcaiadf 1
the lower bounds for reliability of a series system
given by the expression (24). To analyze the 1 \/\ T T T T T TS
properties of this approximation let us consider a
two-element series system whose elements are V
equally reliable. We also assume that the sample 3¢ /\

/|

sizes for both elements are the same. On Figure 1 w
present the comparison of the values of our simple ~ \/
approximate bound with the bounds calculated for

this system using a substitution method. For \/
obtaining the presented results we performed a 25
Monte Carlo simulation experiments, and in each of
them we generated 500 000 test cases, Our

approximate bound, plotted against the expected << cc--<--dddddaaaee s,

number of observed failures in a sample (for a

probability of failure equal to 0,01), is represmht Figure 2 Coverage probabilities for a series system
by a continuous upper curve. The middle curvein case of independence

represents the bound calculated by the insertitm in N\ |et us consider the case when the elements of
(5) the respective lower bound of the confidenceine system are dependent. Bigure 3we show the
for the same confidence leve}=0,9).The lower described by the Clayton copula with dependence
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parameter =2, and the Gumbel copula, with The situation changes dramatically when the
dependence parametér2. For this value of the elements of the system are positively dependegt, e.
parameter the Kendall measure of dependarfoe ~ When their dependence is described either by the
both copulas is equal to 0,5. It means that theClayton copula or by the Gumbel copula. Elgure
dependence is positive and fairly strong. TheS we present the estimated coverage probabilities in
coverage probability in the case of the C|ayt0nSUCh cases when the confidence intervals are
copula (solid line) is greater than the designddeva Calculated using the substitution method.

for tests with the expected value of observed fagu
greater than 5. However, in the case of the
dependence described by the Gumbel copuleé -7 .
(dashed line) this feature is guaranteed only fieg t | °= e
value not greater than 2. It shows, how the type of oss

dependence influences the results despite the fawos-
that the popular measure of dependence, such & .
Kendall T1in both cases gives exactly the same| s
value. Similar results have been also obtainedhi®r | o
FGM copula which can be used for modeling | ...
weaker dependencies.

1,02

1 Figure 4 Coverage probabilities for a parallel
0 system in case of independence

uE 1

0,75

06

|

|
Figure 3 Coverage probabilities for a series system L\\
in case of dependence .

LN N @MW AN S DNWNE MY 0LWoWALWIGLWN e W oW s WS w0
o e} G o ~ T R R e

Now, let us consider the case of the system wit
elements connected in parallel. For such systems kigure 5 Coverage probabilities for a parallel
simple for computation bound which is similar to System in case of dependence

that for a series system does not exist. Instead we

propose the following approximation The coverage probabilities (the left-most curve for
the Clayton copula, and the curve next to it far th
R=1-ming ’ (71) Gumbel copula) show dramatically that the

i

confidence intervals obtained by substitution under
where G is the upper bound of the confidence the assumption of independence are too narrow. On
the other hand, the interval calculated according t
(71) has the coverage probability (depicted by a
dashed curve for the Clayton copula, and equal to
one for the Gumbel copula) greater than the
confidence level.

interval for the probability of failure. The lower
bound calculated according to (71)aisvayssmaller
than the bound obtained by substitution of the
probabilities of failureg; with their respective upper

boundsq; . Thus, the coverage probability in case of

independent elements of the system, calculated) Conclusion

according to (71), is always greater than the _ _
respective confidence level. It can be seefigare ~ Many prominent authors, mainly from USA and the

4, where this probability is always equal to 1. @lot Soviet Union, contributed to the problem of
that the coverage probability in case of the boundcomputing the lower confidence bounds for system’s

obtained by substitution is also much greater tharf€liability using the data from tests of separate
the confidence level which is equal to 0,9). elements or subsystems. The proposed exact bounds
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are

usually difficult to compute. Good10]

approximations exist, but they are usually obtained
under the assumption that failures of all elements
subsystems are observed during the tests. In the the Amer. Stat. Assd68, 670-677.

paper we have shown using Monte Carlo simulatiphl] Lloyd, D.K. & Lipow, M. (1962). Reliability

that in case when elements working together in a Management.

Lentner, M.M. & Buehler, R.J. (1963). Some
inferences about gamma parameters with an
application to a reliability problemJournal of

Methods and Mathematics

system are dependent these bounds are inaccurate or Prentice-Hall, Englewood Cliffs, NJ.

even useless, as it is the case of parallel (rezhtihd [12] Madansky, A. (1965). Approximate Confidence
systems. In the paper, we have proposed very simple Limits for the Reliability of Series and Parallel
bounds characterized by satisfactory performartce, a

least for highly reliable system elements, which afl3]
robust against the presence of positive dependence

of the elements of a system. The

results of

simulation experiments indicate that the proposed

approach is also applicable for series-parallel and

parallel-series systems defined by (7) and (814]
respectively. However, the experiments also show

that our approximations have worse properties for

systems with larger number of elements, unless

these elements are very reliable.

[15]
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