On Rational Functions Related to Algorithms for a Computation of Roots. I

Mirosław Baran

Faculty of Mathematics, Physics and Technical Science, Pedagogical University, Podchorażych 2, 30-084 Kraków, Poland

Article history:

Received 20 December 2019
Received in revised form
27 December 2019
Accepted 27 December 2019
Available online 31 December 2019

Abstract

We discuss a less known but surprising fact: a very old algorithm for computing square root known as the Bhaskara-Brouncker algorithm contains another and faster algorithms. A similar approach was obtained earlier by A.K. Yeyios [8] in 1992. By the way, we shall present a few useful facts as an essential completion of [8]. In particular, we present a direct proof that $k-t h$ Yeyios iterative algorithm is of order k. We also observe that Chebyshev polynomials T_{n} and U_{n} are a special case of a more general construction. The most valuable idea followed this paper is contained in applications of a simple rational function $\Phi(w, z)=\frac{z-w}{z+w}$.

Key words: Algorithms, iterative methods, polynomials, recurrence relations

1. Introduction.

Bhaskara-Brouncker algorithm. Let $x_{a}[n]=\frac{p_{n}(a)}{q_{n}(a)}$, where

$$
\left\{\begin{array}{l}
p_{n+1}(a)=p_{n}(a)+q_{n}(a) a \\
q_{n+1}(a)=p_{n}(a)+q_{n}(a) \\
p_{1}(a)=q_{1}(a)=1
\end{array}\right.
$$

Thus $x_{a}[n+1]=\frac{x_{a}[n]+a}{x_{a}[n]+1}$. First nine elements of the sequel $x_{a}[n]$ are the following

$$
\begin{gathered}
x_{a}[1]=1, x_{a}[2]=\frac{a+1}{2}, x_{a}[3]=\frac{3 a+1}{a+3}, x_{a}[4]=\frac{a^{2}+6 a+1}{4 a+4}, \\
x_{a}[5]=\frac{5 a^{2}+10 a+1}{a^{2}+10 a+5}, x_{a}[6]=\frac{a^{3}+15 a^{2}+15 a+1}{6 a^{2}+20 a+6}, x_{a}[7]=\frac{7 a^{3}+35 a^{2}+21 a+1}{a^{3}+21 a^{2}+35 a+7}, \\
x_{a}[8]=\frac{a^{4}+28 a^{3}+70 a^{2}+28 a+1}{8 a^{3}+56 a^{2}+56 a+8}, x_{a}[9]=\frac{9 a^{4}+84 a^{3}+126 a^{2}+36 a+1}{a^{4}+36 a^{3}+126 a^{2}+84 a+9} .
\end{gathered}
$$

There is known that $\lim _{n \rightarrow \infty} x_{a}[n]=\sqrt{a}$ and

$$
\left|x_{a}[n]-\sqrt{a}\right|=\left|\frac{p_{n}(a)}{q_{n}(a)}-\sqrt{a}\right| \leq \frac{1}{q_{n}(a)\left(p_{n}(a)+q_{n}(a) \sqrt{a}\right)}<\frac{1}{2 q_{n}(a)^{2}} .
$$

Heron's algorithm.

$$
y_{a}[n+1]=\frac{1}{2}\left(y_{a}[n]+\frac{a}{y_{a}[n]}\right), y_{a}[0]=1 .
$$

2010 Mathematics Subject Classification. Primary 31C10 Secondary 32U35, 41A17.
Key words and phrases. Square roots, Heron algorithm, rational approximation.

[^0]$y_{a}[0]=1, y_{a}[1]=\frac{a+1}{2}, y_{a}[2]=\frac{a^{2}+6 a+1}{4 a+4}, y_{a}[3]=\frac{a^{4}+28 a^{3}+70 a^{2}+28 a+1}{8 a^{3}+56 a^{2}+56 a+8}$.
If $F_{a}[n]=\frac{y_{a}[n]-\sqrt{a}}{y_{a}[n]+\sqrt{a}}$ then, as it was observed by $[6] F_{a}[n+1]=F_{a}[n]^{2}$, which implies
$$
F_{a}[n]=F_{a}[0]^{2^{n}}=\left(\frac{y_{a}[0]-\sqrt{a}}{y_{a}[0]+\sqrt{a}}\right)^{2^{n}}
$$

If we put $\varepsilon_{a}[n]=y_{a}[n]-\sqrt{a}$ then

$$
F_{a}[n]=\frac{\varepsilon_{a}[n]}{\varepsilon_{a}[n]+2 \sqrt{a}}, \varepsilon_{a}[n]=2 \sqrt{a} \frac{F_{a}[n]}{1-F_{a}[n]}
$$

and therefore

$$
\left|\varepsilon_{a}[n+1]\right|=\frac{\varepsilon_{a}[n]^{2}}{\left|2 \varepsilon_{a}[n]+2 \sqrt{a}\right|}
$$

with

$$
\lim _{n \rightarrow \infty} \frac{\left|\varepsilon_{a}[n+1]\right|}{\varepsilon_{a}[n]^{2}}=\frac{1}{2 \sqrt{a}}
$$

Halley's algorithm.

$$
\begin{gathered}
z_{a}[n+1]=\frac{z_{a}[n]\left(3 a+z_{a}[n]^{2}\right)}{3 z_{a}[n]^{2}+a}, z_{a}[0]=1 . \\
z_{a}[1]=\frac{3 a+1}{a+3}, \quad z_{a}[2]=\frac{9 a^{4}+84 a^{3}+126 a^{2}+36 a+1}{a^{4}+36 a^{3}+126 a^{2}+84 a+9} .
\end{gathered}
$$

Following [6] (who considered the case of Heron's algorithm) we also define in this case $G_{a}[n]=\frac{z_{a}[n]-\sqrt{a}}{z_{a}[n]+\sqrt{a}}$ and we easily check that $G_{a}[n+1]=$ $G_{a}[n]^{3}$. Hence if $\varepsilon_{a}[n]=z_{a}[n]-\sqrt{a}$ we get

$$
G_{a}[n]=\frac{\varepsilon_{a}[n]}{\varepsilon_{a}[n]+2 \sqrt{a}}, \varepsilon_{a}[n]=2 \sqrt{a} \frac{G_{a}[n]}{1-G_{a}[n]}
$$

and thus

$$
\begin{gathered}
\left|\varepsilon_{a}[n+1]\right|=\left|\varepsilon_{a}[n]\right|^{3} \frac{1}{4 a} \frac{\left(1-G_{a}[n]\right)^{2}}{1+G_{a}[n]+G_{a}[n]^{2}} \\
=\left|\varepsilon_{a}[n]\right|^{3} \frac{1}{3 \varepsilon_{a}[n]^{2}+6 \sqrt{a} \varepsilon_{a}[n]+4 a}=\left|\varepsilon_{a}[n]\right|^{3} \frac{1}{3\left(\varepsilon_{a}[n]+\sqrt{a}\right)^{2}+a}
\end{gathered}
$$

with

$$
\lim _{n \rightarrow \infty} \frac{\left|\varepsilon_{a}[n+1]\right|}{\left|\varepsilon_{a}[n]\right|^{3}}=\frac{1}{4 a} .
$$

Let us observe that

$$
y_{a}[1]=x_{a}[2], \quad y_{a}[2]=x_{a}[4], \quad y_{a}[3]=x_{a}[8]
$$

and

$$
z_{a}[1]=x_{2}[3], \quad z_{a}[2]=x_{a}[9] .
$$

We can suppose that

$$
y_{a}[n]=x_{a}\left[2^{n}\right], z_{a}[n]=x_{a}\left[3^{n}\right], n=0,1,2, \ldots
$$

We shall check in the next section that it is really true.
Let $\Phi(w, z)=\frac{z-w}{z+w}, R_{2}(w, z)=\frac{1}{2}\left(z+\frac{w^{2}}{z}\right), R_{3}(w, z)=\frac{z\left(3 w^{2}+z^{2}\right)}{3 z^{2}+w^{2}}$. Then

$$
\Phi\left(w, R_{2}(w, z)\right)=\Phi(w, z)^{2}, \Phi\left(w, R_{3}(w, z)\right)=\Phi(w, z)^{3} .
$$

The above observations for $F_{a}[n]$ and $G_{a}[n]$ are equivalent to $y_{a}[n+1]=$ $R_{2}\left(\sqrt{a}, y_{a}[n]\right), z_{a}[n+1]=R_{3}\left(\sqrt{a}, z_{a}[n]\right)$ and $\Phi\left(\sqrt{a}, R_{2}\left(\sqrt{a}, y_{a}[n]\right)\right)=\Phi\left(\sqrt{a}, y_{a}[n]\right)^{2}, \Phi\left(\sqrt{a}, R_{3}\left(\sqrt{a}, z_{a}[n]\right)\right)=\Phi\left(\sqrt{a}, z_{a}[n]\right)^{3}$.

Now we introduce a sequence of rational functions $R_{k}(w, z)$ by

$$
\Phi\left(w, R_{k}(w, z)\right)=\Phi(w, z)^{k}, k=1,2, \ldots
$$

The basic properties of R_{k}, which play a crucial role, are contained in the following.

Theorem 1.1. For all $n, m \geq 1$ we have $R_{m n}(w, z)=R_{m}\left(w, R_{n}(w, z)\right)$. If we put for a fixed $w \Phi_{w}(z)=\Phi(w, z)$ then $\Phi_{w}^{-1}(z)=w \frac{1+z}{1-z}$ and

$$
R_{k}(w, z)=\Phi_{w}^{-1}\left(\Phi_{w}(z)^{k}\right)=w \frac{(z+w)^{k}+(z-w)^{k}}{(z+w)^{k}-(z-w)^{k}}, k=1,2, \ldots
$$

Let a sequence $\zeta_{w}[n]$ be defined by the recurrence formula $\zeta_{w}[n+1]=$ $R_{k}\left(w, \zeta_{w}[n]\right), \zeta_{w}[0]=1$. Then, if we consider the error function $E(w, z)=$ $z-w$, we get

$$
\frac{\left|E\left(w, \zeta_{w}[n+1]\right)\right|}{\left|E\left(w, \zeta_{w}[n]\right)\right|^{k}}=\frac{\left|E\left(w, \zeta_{w}[n+1]\right)+2 w\right|}{\left|E\left(w, \zeta_{w}[n]\right)+2 w\right|^{k}} .
$$

Hence, if $\lim _{n \rightarrow \infty} E\left(w, \zeta_{w}[n]\right)=0$, then

$$
\lim _{n \rightarrow \infty} \frac{\left|E\left(w, \zeta_{w}[n+1]\right)\right|}{\left|E\left(w, \zeta_{w}[n]\right)\right|^{k}}=\left(\frac{1}{2|w|}\right)^{k-1}, k \geq 2
$$

This means (cf. [7] and [8] for the definition) that the iterative method $\zeta_{w}[n]$ is of order k.

Proof. We have

$$
\Phi\left(w, R_{m}\left(w, R_{n}(w, z)\right)=\Phi\left(w, R_{n}(w, z)\right)^{m}=\Phi(w, z)^{n m}=\Phi\left(w, R_{m n}(w, z)\right.\right.
$$

which gives $R_{m n}(w, z)=R_{m}\left(w, R_{n}(w, z)\right)$.
2. Bhaskara-Brouncker algorithm gives Heron's and Halley's ALGORITHMIC SEQUENCES.

$$
\begin{aligned}
& \left\{\begin{array}{l}
p_{0}(a)=q_{0}(a)=1, p_{1}(a)=a+1, q_{1}(a)=2 \\
p_{n+1}(a)=p_{n}(a)+a q_{n}(a) \\
q_{n+1}(a)=p_{n}(a)+q_{n}(a)
\end{array}\right. \\
& \left\{\begin{array}{l}
p_{0}(a)=q_{0}(a)=1, p_{1}(a)=a+1, q_{1}(a)=2 \\
p_{n+2}(a)=2 p_{n+1}(a)+(a-1) p_{n}(a) \\
q_{n+2}(a)=2 q_{n+1}(a)+(a-1) q_{n}(a)
\end{array}\right.
\end{aligned}
$$

If $P_{n}(a)=\frac{p_{n+1}(a)}{p_{n}(a)}, \quad Q_{n}(a)=\frac{q_{n+1}(a)}{q_{n}(a)}$, then

$$
\begin{gathered}
P_{n+1}(a)=1+(a-1) / P_{n}(a), Q_{n+1}(a)=1+(a-1) / Q_{n}(a) . \\
{\left[\begin{array}{cc}
p_{n+1}(a) & p_{n}(a) \\
p_{n}(a) & p_{n-1}(a)
\end{array}\right]=\left[\begin{array}{cc}
a+1 & 1 \\
1 & 1
\end{array}\right]\left[\begin{array}{cc}
2 & 1 \\
a-1 & 0
\end{array}\right]^{n}, n=0,1,2,3, \ldots} \\
{\left[\begin{array}{cc}
q_{n+1}(a) & q_{n}(a) \\
q_{n}(a) & q_{n-1}(a)
\end{array}\right]=\left[\begin{array}{cc}
2 & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{cc}
2 & 1 \\
a-1 & 0
\end{array}\right]^{n}, n=0,1,2,3, \ldots} \\
\frac{1}{a}\left[\begin{array}{cc}
1 & -1 \\
-1 & a+1
\end{array}\right]\left[\begin{array}{cc}
p_{n+1}(a) & p_{n}(a) \\
p_{n}(a) & p_{n-1}(a)
\end{array}\right]=\left[\begin{array}{cc}
0 & 1 \\
1 & -2
\end{array}\right]\left[\begin{array}{cc}
q_{n+1}(a) & q_{n}(a) \\
q_{n}(a) & q_{n-1}(a)
\end{array}\right],
\end{gathered}
$$

in particular

$$
q_{n}(a)=\frac{p_{n+1}(a)-p_{n}(a)}{a}, \frac{p_{n}(a)}{q_{n}(a)}=\frac{a p_{n}(a)}{p_{n+1}(a)-p_{n}(a)}=\frac{a}{\frac{p_{n+1}(a)}{p_{n}(a)}-1} .
$$

Since

$$
\left[\begin{array}{cc}
2 & 1 \\
a-1 & 0
\end{array}\right]=\left[\begin{array}{cc}
-\frac{1}{\sqrt{a}+1} \frac{1}{\sqrt{a}-1} & 1 \\
1 & 1
\end{array}\right]\left[\begin{array}{cc}
1-\sqrt{a} & 0 \\
0 & 1+\sqrt{a}
\end{array}\right]\left[\begin{array}{cc}
\frac{1-a}{2 \sqrt{a}} & \frac{1}{2}\left(1+\frac{1}{\sqrt{a}}\right) \\
\frac{-1+a}{2 \sqrt{a}} & \frac{1}{2}\left(1-\frac{1}{\sqrt{a}}\right)
\end{array}\right]
$$

and

$$
\left[\begin{array}{cc}
2 & 1 \\
a-1 & 0
\end{array}\right]^{n}=\left[\begin{array}{cc}
-\frac{1}{\sqrt{a}+1} \frac{1}{\sqrt{a}-1} & 1 \\
1 & 1
\end{array}\right]\left[\begin{array}{cc}
(1-\sqrt{a})^{n} & 0 \\
0 & (1+\sqrt{a})^{n}
\end{array}\right]\left[\begin{array}{cc}
\frac{1-a}{2 \sqrt{a}} & \frac{1}{2}\left(1+\frac{1}{\sqrt{a}}\right) \\
\frac{-1+a}{2 \sqrt{a}} & \frac{1}{2}\left(1-\frac{1}{\sqrt{a}}\right)
\end{array}\right],
$$

we get

$$
\begin{aligned}
p_{n}(a) & =\frac{1}{2}\left((1+\sqrt{a})^{n+1}+(1-\sqrt{a})^{n+1}\right), n=0,1, \ldots \\
q_{n}(a) & =\frac{1}{2 \sqrt{a}}\left((1+\sqrt{a})^{n+1}-(1-\sqrt{a})^{n+1}\right), n=0,1, \ldots
\end{aligned}
$$

Thus we have checked the following fact.

Proposition 2.1.

$$
x_{a}[n]=\sqrt{a} \frac{(1+\sqrt{a})^{n}+(1-\sqrt{a})^{n}}{(1+\sqrt{a})^{n}-(1-\sqrt{a})^{n}}, n=1,2, \ldots
$$

The above Proposition is also a Corollary to the following nice fact.
Theorem 2.2. If $x_{a}[n+1]=\frac{x_{a}[n]+a}{x_{a}[n]+1}$ then

$$
\begin{equation*}
\Phi\left(\sqrt{a}, x_{a}[n+1]\right)=g(\sqrt{a}) \Phi\left(\sqrt{a}, x_{a}[n]\right) \tag{2.1}
\end{equation*}
$$

where $g(u)=\frac{1-u}{1+u}, u \neq 1$.
Proof. Let $h(w, z)=\frac{z+w^{2}}{z+1}$. To check (2.1), we prove that $\Phi(w, h(w, z))=$ $g(w) \Phi(w, z)$. Really,

$$
\Phi(w, h(w, z))=\frac{\frac{z+w^{2}}{z+1}-w}{\frac{z+w^{2}}{z+1}+w}=\frac{z(1-w)-w(1-w)}{z(1+w)+w(1+w)}=g(w) \Phi(w, z)
$$

Corollary 2.3. For any positive integer n we have

$$
\begin{gather*}
\Phi\left(\sqrt{a}, x_{a}[n]\right)=\frac{1-\sqrt{a}}{1+\sqrt{a}} \Phi\left(\sqrt{a}, x_{a}[n-1]\right) \tag{2.2}\\
=\left(\frac{1-\sqrt{a}}{1+\sqrt{a}}\right)^{k} \Phi\left(\sqrt{a}, x_{a}[n-k]\right)=\left(\frac{1-\sqrt{a}}{1+\sqrt{a}}\right)^{n} . \\
x_{a}[n]=\Phi_{\sqrt{a}}^{-1}\left(\left(\frac{1-\sqrt{a}}{1+\sqrt{a}}\right)^{n}\right)=\sqrt{a} \frac{(1+\sqrt{a})^{n}+(1-\sqrt{a})^{n}}{(1+\sqrt{a})^{n}-(1-\sqrt{a})^{n}} . \tag{2.3}
\end{gather*}
$$

Proposition 2.4.

$$
x_{a}[2 n]=\frac{1}{2}\left(x_{a}[n]+a / x_{a}[n]\right), \quad n=1,2, \ldots
$$

In particular,

$$
x_{a}\left[2^{n+1}\right]=\frac{1}{2}\left(x_{a}\left[2^{n}\right]+a / x_{a}\left[2^{n}\right]\right), n=0,1, \ldots
$$

Proof.

$$
\begin{aligned}
\frac{1}{2}\left(x_{a}[n]+a / x_{a}[n]\right) & =\frac{1}{2} \sqrt{a}\left(\frac{(1+\sqrt{a})^{n}+(1-\sqrt{a})^{n}}{(1+\sqrt{a})^{n}-(1-\sqrt{a})^{n}}+\frac{(1+\sqrt{a})^{n}-(1-\sqrt{a})^{n}}{(1+\sqrt{a})^{n}+(1-\sqrt{a})^{n}}\right) \\
& =\sqrt{a} \frac{(1+\sqrt{a})^{2 n}+(1-\sqrt{a})^{2 n}}{(1+\sqrt{a})^{2 n}-(1-\sqrt{a})^{2 n}}=x_{a}[2 n] .
\end{aligned}
$$

On can check, in a similar way, next proposition.

Proposition 2.5.

$$
x_{a}[3 n]=\frac{x_{a}[n]\left(3 a+x_{a}[n]^{2}\right)}{3 x_{a}[n]^{2}+a}, n=1,2, \ldots
$$

In particular,

$$
x_{a}\left[3^{n+1}\right]=\frac{x_{a}\left[3^{n}\right]\left(3 a+x_{a}\left[3^{n}\right]^{2}\right)}{3 x_{a}\left[3^{n}\right]^{2}+a}, n=0,1, \ldots
$$

Define

$$
h_{a}(t)=\frac{a+t}{1+z}, h_{a}^{2}(t)=h_{a}\left(h_{a}(t)\right)=\frac{a+\frac{a+1}{2} t}{\frac{a+1}{2}+t}, h_{a}^{3}(t)=\frac{a+\frac{3 a+1}{a+3} t}{\frac{3 a+1}{a+3}+t}, \ldots
$$

We propose to the reader to check following facts.

Proposition 2.6.

$$
h_{a}^{n}(t)=\frac{a+x_{a}[n] t}{x_{a}[n]+t}, n \geq 1, h_{a}^{n}(1)=x_{a}[n+1] .
$$

Corollary 2.7.

$$
\lim _{n \rightarrow \infty} h_{a}^{n}(t)=\frac{a+\sqrt{a} t}{\sqrt{a}+t}=\sqrt{a}
$$

and

$$
\Phi\left(\sqrt{a}, h_{a}^{n}[t]\right)=\Phi(\sqrt{a}, t) \Phi\left(\sqrt{a}, x_{a}[n]\right)
$$

3. Generalizations of Yeyios polynomials.

Yeyios [8] introduced polynomials P_{n} and Q_{n} in the following way.

$$
\left.\begin{array}{c}
\left\{\begin{array}{l}
P_{n+1}(x)=x P_{n}(x)+Q_{n}(x) a ; \\
Q_{n+1}(x)=P_{n}(x)+x Q_{n}(x) ; \\
P_{0}(x)=x, Q_{0}(x)=1 .
\end{array}\right. \\
\left\{\begin{array}{l}
P_{0}(x)=x, Q_{0}(x)=1, P_{1}(x)=x^{2}+a, Q_{1}(x)=2 x, P_{-1}(x)=1, Q_{-1}(x)=0 ; \\
P_{n+2}(x)=2 x P_{n+1}(x)+\left(a-x^{2}\right) P_{n}(x) ; \\
Q_{n+2}(x)=2 x Q_{n+1}(x)+\left(a-x^{2}\right) Q_{n}(x) .
\end{array}\right. \\
{\left[\begin{array}{cc}
P_{n+1}(x) & P_{n}(x) \\
P_{n}(x) & P_{n-1}(x)
\end{array}\right]=\left[\begin{array}{cc}
x^{2}+a & x \\
x & 1
\end{array}\right]\left[\begin{array}{cc}
2 x & 1 \\
a-x^{2} & 0
\end{array}\right]^{n}, n=0,1,2,3, \ldots}
\end{array}\right] \begin{array}{cc}
\left.\begin{array}{cc}
Q_{n+1}(x) & Q_{n}(x) \\
Q_{n}(x) & Q_{n-1}(x)
\end{array}\right]=\left[\begin{array}{cc}
2 x & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{cc}
2 x & 1 \\
a-x^{2} & 0
\end{array}\right]^{n}, n=0,1,2,3, \ldots \\
\frac{1}{a}\left[\begin{array}{cc}
1 & -x \\
-x & a+x^{2}
\end{array}\right]\left[\begin{array}{cc}
P_{n+1}(x) & P_{n}(x) \\
P_{n}(x) & P_{n-1}(x)
\end{array}\right]=\left[\begin{array}{cc}
0 & 1 \\
1 & -2 x
\end{array}\right]\left[\begin{array}{cc}
Q_{n+1}(x) & Q_{n}(x) \\
Q_{n}(x) & Q_{n-1}(x)
\end{array}\right] .
\end{array}
$$

In particular

$$
Q_{n}(x)=\frac{P_{n+1}(x)-x P_{n}(x)}{a}, \frac{P_{n}(x)}{Q_{n}(x)}=\frac{a P_{n}(x)}{P_{n+1}(x)-x P_{n}(x)}=\frac{a}{\frac{P_{n+1}(x)}{P_{n}(x)}-x} .
$$

Since

$$
\left[\begin{array}{cc}
2 x & 1 \\
a-x^{2} & 0
\end{array}\right]=\left[\begin{array}{cc}
-\frac{1}{\sqrt{a}+x} \frac{1}{\sqrt{a}-x} & 1 \\
1 & 1
\end{array}\right]\left[\begin{array}{cc}
x-\sqrt{a} & 0 \\
0 & x+\sqrt{a}
\end{array}\right]\left[\begin{array}{cc}
\frac{x^{2}-a}{2 \sqrt{a}} & \frac{1}{2}\left(1+\frac{x}{\sqrt{a}}\right) \\
\frac{-x^{2}+a}{2 \sqrt{a}} & \frac{1}{2}\left(1-\frac{x}{\sqrt{a}}\right)
\end{array}\right]
$$

and

$$
\left[\begin{array}{cc}
2 x & 1 \\
a-x^{2} & 0
\end{array}\right]^{n}=\left[\begin{array}{cc}
-\frac{1}{\sqrt{a}+x} \frac{1}{\sqrt{a}-x} & \\
1 & 1
\end{array}\right]\left[\begin{array}{cc}
(x-\sqrt{a})^{n} & 0 \\
0 & (x+\sqrt{a})^{n}
\end{array}\right]\left[\begin{array}{cc}
\frac{x^{2}-a}{2 \sqrt{a}} & \frac{1}{2}\left(1+\frac{x}{\sqrt{a}}\right) \\
\frac{-x^{2}+a}{2 \sqrt{a}} & \frac{1}{2}\left(1-\frac{x}{\sqrt{a}}\right)
\end{array}\right]
$$

we get

$$
\begin{gathered}
P_{n}(a, z)=\frac{1}{2}\left((z+\sqrt{a})^{n+1}+(z-\sqrt{a})^{n+1}\right), n=0,1, \ldots \\
Q_{n}(a, z)=\frac{1}{2 \sqrt{a}}\left((z+\sqrt{a})^{n+1}-(z-\sqrt{a})^{n+1}\right), n=0,1, \ldots \\
S_{n}(a, z)=\frac{P_{n-1}(a, z)}{Q_{n-1}(a, z)}=\sqrt{a} \frac{(z+\sqrt{a})^{n}+(z-\sqrt{a})^{n}}{(z+\sqrt{a})^{n}-(z-\sqrt{a})^{n}} .
\end{gathered}
$$

Proposition 3.1.

$$
S_{n}(a, z)=z x_{n}\left[a / z^{2}\right] .
$$

Theorem 3.2. (A.K. Yeyios [8]) For all $n, m \geq 1$

$$
S_{n m}(, a z)=S_{n}\left(a, S_{m}(a, z)\right)
$$

$$
\begin{gathered}
\hat{P}_{n}(w, z)=\frac{1}{2}\left((z+w)^{n}+(z-w)^{n}\right), \hat{Q}_{n}(z, w)=\frac{1}{2 w}\left((z+w)^{n+1}-(z-w)^{n+1}\right), \\
\hat{S}_{n}(w, z)=\frac{\hat{P}_{n}(w, z)}{\hat{Q}_{n-1}(w, z)}=R_{n}(w, z) .
\end{gathered}
$$

We left to the reader to check the following properties.
Theorem 3.3. For arbitrary $n, m \geq 1$

- $\hat{Q}_{n}(w, z)=\frac{1}{w(n+2)} \frac{\partial \hat{P}_{n+2}(w, z)}{\partial w}$
- $\hat{S}_{n m}(w, z)=\hat{S}_{n}\left(w, \hat{S}_{m}(w, z)\right)$.
- $\hat{P}_{n}(\sqrt{a}, z)=P_{n-1}(a, z), \hat{Q}_{n}(\sqrt{a}, z)=Q_{n}(a, z), \hat{S}_{n}(\sqrt{a}, z)=S_{n}(a, z)$.
- $\hat{P}_{n}\left(\sqrt{z^{2}-1}, z\right)=P_{n-1}\left(z^{2}-1, z\right)=T_{n}(z)$,
$\hat{Q}_{n}\left(\sqrt{z^{2}-1}, z\right)=Q_{n}\left(z^{2}-1, z\right)=U_{n}(z)$.
Here T_{n} and U_{n} denote classical Chebyshev polynomials of the first and the second kind, respectively.

Remark 3.4. Let polynomials $P_{n}, n \geq 0$, satisfy recurrence $P_{n+2}(x)=$ $2 x P_{n+1}(x)-P_{n}(x), n \geq 0$ and take $Q_{n}(x)=P_{n+1}(x) / P_{n}(x)$ which will give a relation $Q_{n+1}(x)=2 x-1 / Q_{n}(x)$.

Now calculate $\Phi\left(w, Q_{n+1}(x)-x\right)$:
$\Phi\left(w, Q_{n+1}(x)-x\right)=\frac{(x-w) Q_{n}(x)-1}{(x+w) Q_{n}(x)-1}=\frac{x-w}{x+w} \frac{Q_{n}(x)-1 /(2 x-w)}{Q_{n}(x)-1 /(2 x+w)}$

$$
=\Phi(w, x) \frac{Q_{n}(x)-x+x-1 /(2 x-w)}{Q_{n}(x)-x+x-1 /(2 x+w)} .
$$

If we choose w so that $x-1 /(2 x-w)=-w, x-1 /(2 x+w)=w$, we shall get

$$
\Phi\left(w, Q_{n+1}(x)-x\right)=\Phi(w, x) \Phi\left(w, Q_{n}(x)-x\right)
$$

A proper choice is $w=\sqrt{x^{2}-1}$ and then

$$
\Phi\left(w, Q_{n+1}(x)-x\right)=\Phi(w, x)^{k} \Phi\left(w, Q_{n-k+1}(x)-x\right), k=1, \ldots, n+1
$$

Hence

$$
\begin{gathered}
\Phi\left(w, Q_{n}(x)-x\right)=\Phi(w, x)^{n} \Phi\left(w, Q_{0}(x)-x\right) \\
Q_{n}(x)-x=\Phi_{w}^{-1}\left(\Phi(w, x)^{n} \Phi\left(w, Q_{0}(x)-x\right)\right)=w \frac{1+\Phi(w, x)^{n} \Phi\left(w, Q_{0}(x)-x\right)}{1-\Phi(w, x)^{n} \Phi\left(w, Q_{0}(x)-x\right)}, \\
Q_{n}(x)=x+w \frac{1+\Phi(w, x)^{n} \Phi\left(w, Q_{0}(x)-x\right)}{1-\Phi(w, x)^{n} \Phi\left(w, Q_{0}(x)-x\right)}
\end{gathered}
$$

and we can obtain (in an alternative way) formulas for $P_{n}(x)$. Consider, as an example, $P_{0}(x)=1, P_{1}(x)=x, Q_{0}(x)=x$. Then $\Phi\left(w, Q_{0}(x)-x\right)=-1$, whence

$$
\begin{aligned}
Q_{n}(x) & =x+w \frac{1-\Phi(w, x)^{n}}{1+\Phi(w, x)^{n}}=\frac{x\left(1+\Phi(w, z)^{n}\right)+w\left(1-\Phi(w, z)^{n}\right)}{1+\Phi(w, z)^{n}} \\
& =\frac{x+w+(x-w) \Phi(w, x)^{n}}{1+\Phi(w, x)^{n}}=(x+w) \frac{1+\Phi(w, x)^{n+1}}{1+\Phi(w, x)^{n}}
\end{aligned}
$$

Since $P_{n}(x)=Q_{n-1}(x) \cdot Q_{n-2}(x) \cdots Q_{0}(x)$, we get

$$
P_{n}(x)=(x+w)^{n} \frac{1+\Phi(w, x)^{n}}{1+\Phi(w, x)^{0}}=\frac{1}{2}\left((x+w)^{n}+(x-w)^{n}\right)
$$

which is known as a formula for Chebyshev polynomials $P_{n}(x)=T_{n}(x)$.

Acknowledgment. The author was partially supported by the National Science Centre, Poland, 2017/25/B/ST1/00906.

References

[1] D. Braess, Nonlinear approximation theory, Springer Ser. Comput. Math. Springer, New York (1986).
[2] L. Fox, I.B. Parker, Chebyshev Polynomials in Numerical Analysis, Oxford University Press, London, New York, Toronto (1968).0.
[3] E.S. Gawlik, Zolotariev iterations for the matrix square root, SIAM J. Matrix Anal. Appl. 40 (2) (2019), 696-719.
[4] J.C. Mason, D.C. Handscomb, Chebyshev polynomials, Chapman and Hall/CRC (2003).
[5] T.J. Rivlin, Chebyshev Polynomials: From Approximation Theory to Algebra and Number Theory, John Wiley, New York. (2nd ed. of Rivlin) (1990).
[6] H. Rutishauser, Betrachtungen zur Quadratwurzeliteration, Monath. f. Math. 67 (1963) 452-464.
[7] J.F. Traub, Iterative Methods for the Solution of Equations, PrenticeHall, Englewood Cliffs, NY (1083).
[8] A.K. Yeyios, On two sequences of algorithms for approximating square roots, J. of Comp. Appl. Math. 40 (1992), 63-72.

[^0]: *Corresponding author: miroslaw.baran@up.krakow.pl

