PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

BAED: A secured biometric authentication system using ECG signal based on deep learning techniques

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Biometric authentication technology has become increasingly common in our daily lives as information protection and control regulation requirements have grown worldwide. A biometric system must be simple, flexible, efficient, and secure from unauthorized access. The most suitable and flexible biometric traits are the face, fingerprint, palm print, voice, electrocardiogram (ECG), and iris. ECGs are difficult to falsify among these biometric traits and are less attack-prone. However, designing biometric systems based on ECG is very challenging. The major limitations of the existing techniques are that they require a large amount of training data and that they are trained and tested on an on-person database. To cope with these issues, this work proposes a novel biometric authentication scheme based on ECG detection called BAED. The system was developed based on deep learning algorithms, including a convolutional neural network (CNN) and a long-term memory (LSTM) network with a customized activation function. The authors evaluated the proposed model with on-and off-person databases including ECG-ID, Physikalisch-Technische Bundesanstalt (PTB), Check Your Bio-signals Here Initiative (CYBHi), and the University of Toronto Database (UofTDB). In addition to the standard performance parameters, certain key supportive identification parameters such as FMR, FNMR, FAR, and FRR were computed and compared to increase the model’s credibility.The proposed BAED system outperforms prior state-of-the-art approaches.
Twórcy
  • Department of EC, National Institute of Technology Rourkela, Odisha-769008, India
  • Department of ECE, Aditya Institute of Technology and Management, Tekkali, India
  • Information Technology Dept., Faculty of Computers and Information, Menoufia University, Menoufia, Egypt
  • AGH University of Science and Technology, Department of Biocybernetics and Biomedical Engineering, Krakow, Poland
  • Department of Computer Science, Faculty of Computer Science and Telecommunications, Cracow University of Technology, Krakow, Poland
  • Institute of Theoretical and Applied Informatics, Polish Academy of Sciences, Gliwice, Poland
Bibliografia
  • [1] Bowyer KW, Burge MJ. Handbook of iris recognition. Springer; 2016.
  • [2] Connie T, Goh MKO, Teoh ABJA. Grassmannian approach to address view change problem in gait recognition. IEEE Trans Cybern 2016;47(6):1395–408.
  • [3] Ding C, Choi J, Tao D, Davis LS. Multi-directional multi-level dualcross patterns for robust face recognition. IEEE Trans Pattern Anal Mach Intell 2015;38(3):518–31.
  • [4] Jain AK, Ross AA, Nandakumar K. Introduction to biometrics. Springer Science & Business Media; 2011.
  • [5] Abo-Zahhad M, Ahmed SM, Abbas SN. Biometric authentication based on PCG and ECG signals: present status and future directions. Signal, Image Video Process 2014;8 (4):739–51.
  • [6] Pinto JR, Cardoso JS, Lourenc¸o A. Evolution, current challenges, and future possibilities in ECG biometrics. IEEE Access 2018;6:34746–76.
  • [7] Patro KK, Jaya Prakash A, Jayamanmadha Rao M, Rajesh Kumar P. An efficient optimized feature selection with machine learning approach for ECG biometric recognition. IETE J Res 2020;1–12.
  • [8] Kim SK, Yeun CY, Damiani E. Lo NW. A machine learning framework for biometric authentication using electrocardiogram. IEEE Access 2019;7:94858–68.
  • [9] Sahoo JP, Prakash AJ, Plawiak P, Samantray S. Real-Time Hand Gesture Recognition Using Fine-Tuned Convolutional Neural Network. Sensors. 2022;22(3):706.
  • [10] Odinaka I, Lai PH, Kaplan AD, O’Sullivan JA, Sirevaag EJ, Rohrbaugh JW. ECG biometric recognition: A comparative analysis. IEEE Trans Inform Forensics Security 2012;7 (6):1812–24.
  • [11] Choi HS, Lee B, Yoon S. Biometric authentication using noisy electrocardiograms acquired by mobile sensors. IEEE Access 2016;4:1266–73.
  • [12] Hammad M, Liu Y, Wang K. Multimodal biometric authentication systems using convolution neural network based on different level fusion of ECG and fingerprint. IEEE Access 2018;7:26527–42.
  • [13] Sakr AS, Plawiak P, Tadeusiewicz R, Hammad M. Cancelable ECG biometric based on combination of deep transfer learning with DNA and amino acid approaches for human authentication. Information Sciences. 2022;585: 127-43.
  • [14] Eltrass AS, Tayel MB, Ammar AI. Automated ECG multi-class classification system based on combining deep learning features with HRV and ECG measures. Neural Computing Appl 2022;1–21.
  • [15] Pinto JR, Cardoso JS, Lourenc¸o A, Carreiras C. Towards a continuous biometric system based on ECG signals acquired on the steering wheel. Sensors 2017;17(10):2228.
  • [16] Hussein S, Kandel P, Bolan CW, Wallace MB, Bagci U. Lung and pancreatic tumor characterization in the deep learning era: novel supervised and unsupervised learning approaches. IEEE Trans Medical Imaging 2019;38(8):1777–87.
  • [17] Lee JN, Kwak KC. ECG-Based Biometrics Using a Deep Network Based on Independent Component Analysis. IEEE Access 2022;10:12913–26.
  • [18] Tirado-Martin P, Sanchez-Reillo R. BioECG: Improving ECG Biometrics with Deep Learning and Enhanced Datasets. Appl Sci 2021;11(13):5880.
  • [19] Srivastva R, Singh A, Singh YN. PlexNet: A fast and robust ECG biometric system for human recognition. Inform Sci 2021;558:208–28.
  • [20] Yang W, Wang SA. Privacy-Preserving ECG-Based Authentication System for Securing Wireless Body Sensor Networks. IEEE Internet Things J 2021.
  • [21] Jyotishi D, Dandapat S. An ECG Biometric System Using Hierarchical LSTM With Attention Mechanism. IEEE Sensors J 2021.
  • [22] Richardson F, Reynolds D, Dehak N. Deep neural network approaches to speaker and language recognition. IEEE Signal Processing Lett 2015;22(10):1671–5.
  • [23] Parkhi OM, Vedaldi A, Zisserman A. Deep face recognition. 2015.
  • [24] Sinha VK, Patro KK, Plawiak P, Prakash AJ. SmartphoneBased Human Sitting Behaviors Recognition Using Inertial Sensor. Sensors. 2021;21(19):6652.
  • [25] Tantawi M, Salem A, Tolba MF. ECG signals analysis for biometric recognition. In: 2014 14th International Conference on Hybrid Intelligent Systems. IEEE; 2014. p. 169–75.
  • [26] Kim KS, Yoon TH, Lee JW, Kim DJ, Koo HS.A robust human identification by normalized time-domain features of electrocardiogram. In: 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference. IEEE; 2006. p. 1114-7.
  • [27] Chan AD, Hamdy MM, Badre A, Badee V. Person identification using electrocardiograms. In: 2006 Canadian Conference on Electrical and Computer Engineering. IEEE; 2006. p. 1–4.
  • [28] Kim SK, Yeun CY, Yoo PD. An enhanced machine learning-based biometric authentication system using RR-interval framed electrocardiograms. IEEE Access 2019;7:168669–74.
  • [29] Irvine JM. Israel SA.A sequential procedure for individual identity verification using ECG. EURASIP J Adv Signal Process 2009:1–13.
  • [30] Odinaka I, Lai PH, Kaplan AD, O’Sullivan JA, Sirevaag EJ, Kristjansson SD, et al. ECG biometrics: A robust short-time frequency analysis. In: 2010 IEEE International Workshop on Information Forensics and Security. IEEE; 2010. p. 1-6.
  • [31] Wang K, Yang G, Huang Y, Yin Y. Multi-scale differential feature for ECG biometrics with collective matrix factorization. Pattern Recogn 2020;102 107211.
  • [32] Hejazi M, Al-Haddad S, Hashim SJ, Aziz AFA, Singh YP. Nonfiducial based ECG biometric authentication using one-class support vector machine. In: 2017 Signal Processing: Algorithms, Architectures, Arrangements, and Applications (SPA). IEEE; 2017. p. 190–4.
  • [33] Fatemian SZ, Hatzinakos DA. new ECG feature extractor for biometric recognition. In: 2009 16th international conference on digital signal processing. IEEE; 2009. p. 1–6.
  • [34] Wan Y, Yao J, et al. A neural network to identify human subjects with electrocardiogram signals. In: Proceedings of the world congress on engineering and computer science. Citeseer. p. 1–4.
  • [35] Ghofrani N, Bostani R. Reliable features for an ECG-based biometric system. In: 2010 17th Iranian Conference of Biomedical Engineering (ICBME). IEEE; 2010. p. 1–5.
  • [36] Vuksanovic B, Alhamdi M. Analysis of human electrocardiogram for biometric recognition using analytic and AR modeling extracted parameters. Int J Inform Electron Eng 2014;4(6):428.
  • [37] Biel L, Pettersson O, Philipson L, Wide P. ECG analysis: a new approach in human identification. IEEE Trans Instrumentation Measur 2001;50(3):808–12.
  • [38] Shen TW, Tompkins W, Hu Y. One-lead ECG for identity verification. In: Proceedings of the second joint 24th annual conference and the annual fall meeting of the biomedical engineering society engineering in medicine and biology. vol. 1. IEEE; 2002. p. 62–3.
  • [39] Israel SA, Scruggs WT, Worek WJ, Irvine JM. Fusing face and ECG for personal identification. In: 32nd Applied Imagery Pattern Recognition Workshop, 2003. Proceedings. IEEE; 2003. p. 226–31.
  • [40] Plataniotis KN, Hatzinakos D, Lee JKECG. biometric recognition without fiducial detection. In: 2006 Biometrics symposium: Special session on research at the biometric consortium conference. IEEE; 2006. p. 1–6.
  • [41] Lee JKM. ECG feature extraction without fiducial detection: applications to ECG biometric recognition. In: Library and Archives Canada= Bibliotheque et Archives, Canada, Ottawa.
  • [42] Chan AD, Hamdy MM, Badre A, Badee V. Wavelet distance measure for person identification using electrocardiograms. IEEE Trans Instrum Measur 2008;57(2):248–53.
  • [43] Li M, Narayanan S. Robust ECG biometrics by fusing temporal and cepstral information. In: 2010 20th International Conference on Pattern Recognition. IEEE; 2010. p. 1326–9.
  • [44] Safie SI, Soraghan JJ, Petropoulakis L. Electrocardiogram (ECG) Biometric Authentication Using Pulse Active Ratio (PAR). IEEE Trans Inform Forensics Security 2011;6(4):1315–22.
  • [45] Zeng F, Tseng KK, Huang HN, Tu SY, Pan JS. A new statistical-based algorithm for ECG identification. In: 2012 Eighth International Conference on Intelligent Information Hiding and Multimedia Signal Processing. IEEE; 2012. p. 301–4.
  • [46] Islam MS, Alajlan N, Bazi Y, Hichri HS. HBS: a novel biometric feature based on heartbeat morphology. IEEE Trans Inform Technol Biomed 2012;16(3):445–53.
  • [47] Gürkan H, Guz U, Yarman BS.A novel biometric authentication approach using electrocardiogram signals. In: 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE; 2013. p. 4259-62.
  • [48] Labati RD, Piuri V, Sassi R, Scotti F. HeartCode: A novel binary ECGbased template. In: 2014 IEEE Workshop on Biometric Measurements and Systems for Security and Medical Applications (BIOMS) Proceedings. IEEE; 2014. p. 86–91.
  • [49] Tantawi MM, Revett K, Salem AB. Tolba MF.A wavelet feature extraction method for electrocardiogram (ECG)-based biometric recognition. Signal, Image Video Process 2015;9 (6):1271–80.
  • [50] Hejazi M, Al-Haddad SAR, Singh YP, Hashim SJ, Aziz AFA. ECG biometric authentication based on non-fiducial approach using kernel methods. Digital Signal Process 2016;52:72–86.
  • [51] Jung WH, Lee SG. ECG identification based on non-fiducial feature extraction using window removal method. Appl Sci 2017;7(11):1205.
  • [52] Srivastva R, Singh YN. ECG biometric analysis using walsh-hadamard transform. In: Advances in data and information sciences. Springer; 2018. p. 201–10.
  • [53] Prakash, Jaya A. Capsule Network for the Identification of Individuals Using Quantized ECG Signal Images. IEEE Sensors Letters IEEE 2022;6(8):1–4.
  • [54] Li Y, Pang Y, Wang K, Li X. Toward improving ECG biometric identification using cascaded convolutional neural networks. Neurocomputing. 2020;391:83–95.
  • [55] AlDuwaile DA, Islam MS. Using convolutional neural network and a single heartbeat for ECG biometric recognition. Entropy 2021;23(6):733.
  • [56] Zhang X, Zhang Y, Zhang L, Wang H, Tang J. Ballistocardiogram Based Person Identification and Authentication Using Recurrent Neural Networks. In: 2018 11th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI); 2018. p. 1–5.
  • [57] Chu Y, Shen H, Huang K. ECG authentication method based on parallel multi-scale one-dimensional residual network with center and margin loss. IEEE Access 2019;7(6):51598–607.
  • [58] Gahi Y, Lamrani M, Zoglat A, Guennoun M, Kapralos B, ElKhatib K. Biometric identification system based on electrocardiogram data. In: 2008 New Technologies, Mobility and Security. IEEE; 2008. p. 1–5.
  • [59] Islam MS, Alajlan N. Biometric template extraction from a heartbeat signal captured from fingers. Multimedia Tools Appl 2017;76(10):12709–33.
  • [60] Pinto JR, Cardoso JS. An end-to-end convolutional neural network for ECG-based biometric authentication. In: 2019 IEEE 10th International Conference on Biometrics Theory, Applications and Systems (BTAS). IEEE; 2019. p. 1–8.
  • [61] Saadatnejad S, Oveisi M, Hashemi M. LSTM-based ECG classification for continuous monitoring on personal wearable devices. IEEE J Biomedi Health Inform 2019;24 (2):515–23.
  • [62] Lee JA, Kwak KC. Personal Identification Using an Ensemble Approach of 1D-LSTM and 2D-CNN with Electrocardiogram Signals. Appl Sci 2022;12(5):2692.
  • [63] Wu B, Yang G, Yang L, Yin Y. Robust ecg biometrics using two-stage model. In: 2018 24th International Conference on Pattern Recognition (ICPR). IEEE; 2018. p. 1062–7.
  • [64] Salloum R, Kuo CCJ. ECG-based biometrics using recurrent neural networks. In: 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE; 2017. p. 2062–6.
  • [65] Zhang Q, Zhou D, Zeng X. HeartID: A multiresolution convolutional neural network for ECG-based biometric human identification in smart health applications. IEEE Access 2017;5:11805–16.
  • [66] Gabbouj M, Kiranyaz S, Malik J, Zahid MU, Ince T, Chowdhury ME, et al. Robust Peak Detection for Holter ECGs by Self-Organized Operational Neural Networks. IEEE Trans Neural Networks Learn Syst 2022.
  • [67] Kabir MA, Shahnaz C. Denoising of ECG signals based on noise reduction algorithms in EMD and wavelet domains. Biomed Signal Process Control 2012;7(5):481–9.
  • [68] Kim H, Chun SY. Cancelable ECG biometrics using compressive sensing-generalized likelihood ratio test. IEEE Access 2019;7:9232–42.
  • [69] Moody G, Mark R, Goldberger A. PhysioNet: A research resource for studies of complex physiologic and biomedical signals. In: Computers in Cardiology 2000. Vol. 27 (Cat. 00CH37163). IEEE; 2000. p. 179–82.
  • [70] Liu J, Yin L, He C, Wen B, Hong X, Li Y. A multiscale autoregressive model-based electrocardiogram identification method. IEEE Access. 2018;6:18251–63.
  • [71] Karimian N, Tehranipoor M, Woodard D, Forte D. Unlock your heart: Next generation biometric in resource-constrained healthcare systems and IoT. IEEE Access 2019;7:49135–49.
  • [72] Kim J, Yang G, Kim J, Lee S, Kim KK, Park C. Efficiently Updating ECG-Based Biometric Authentication Based on Incremental Learning. Sensors 2021;21(5):1568.
  • [73] Benouis M, Mostefai L, Costen N, Regouid M. ECG based biometric identification using one-dimensional local difference pattern. Biomed Signal Process Control 2021;64 102226.
  • [74] Narayana V, Vobbilisetty AK, Mantripragada S, Merugu V, Prakash K. ECG Based Biometric Authentication System using Deep Learning Methods. In: 2022 3rd International Conference for Emerging Technology (INCET). IEEE; 2022. p. 1-4.
  • [75] Sun L, Zhong Z, Qu Z, Xiong N. PerAE: An Effective Personalized AutoEncoder for ECG-Based Biometric in Augmented Reality System. IEEE J Biomed Health Inform 2022;26(6):2435–46.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-47895be6-53e5-4a0e-b54d-0b6a992f5660
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.